Metallicious: Automated Force-Field Parameterization of Covalently Bound Metals for Supramolecular Structures

被引:1
|
作者
Piskorz, Tomasz K. [1 ]
Lee, Bernadette [1 ]
Zhan, Shaoqi [1 ,2 ]
Duarte, Fernanda [1 ]
机构
[1] Univ Oxford, Dept Chem, Oxford OX1 3QZ, England
[2] Angstromlaboratoriet, Dept Chem Angstrom, S-75120 Uppsala, Sweden
基金
英国工程与自然科学研究理事会; 瑞典研究理事会;
关键词
ZEOLITIC IMIDAZOLATE FRAMEWORKS; INCLUDING CHARGE-TRANSFER; MOLECULAR-MECHANICS; COORDINATION-COMPLEXES; RATIONAL DESIGN; ORGANIC FRAMEWORKS; MONOVALENT IONS; SIMULATION; DYNAMICS; MODEL;
D O I
10.1021/acs.jctc.4c00850
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal ions play a central, functional, and structural role in many molecular structures, from small catalysts to metal-organic frameworks (MOFs) and proteins. Computational studies of these systems typically employ classical or quantum mechanical approaches or a combination of both. Among classical models, only the covalent metal model reproduces both geometries and charge transfer effects but requires time-consuming parameterization, especially for supramolecular systems containing repetitive units. To streamline this process, we introduce metallicious, a Python tool designed for efficient force-field parameterization of supramolecular structures. Metallicious has been tested on diverse systems including supramolecular cages, knots, and MOFs. Our benchmarks demonstrate that parameters accurately reproduce the reference properties obtained from quantum calculations and crystal structures. Molecular dynamics simulations of the generated structures consistently yield stable simulations in explicit solvent, in contrast to similar simulations performed with nonbonded and cationic dummy models. Overall, metallicious facilitates the atomistic modeling of supramolecular systems, key for understanding their dynamic properties and host-guest interactions. The tool is freely available on GitHub (https://github.com/duartegroup/metallicious).
引用
收藏
页码:9060 / 9071
页数:12
相关论文
共 50 条
  • [1] MOLECULAR MECHANICS FORCE-FIELD PARAMETERIZATION PROCEDURES
    HOPFINGER, AJ
    PEARLSTEIN, RA
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1984, 5 (05) : 486 - 499
  • [2] Polyoxovanadate clusters and cages: force-field parameterization
    Menke, C
    Diemann, E
    Muller, A
    JOURNAL OF MOLECULAR STRUCTURE, 1997, 437 : 35 - 47
  • [3] FORCE-FIELD PARAMETERIZATION FOR THE 4-FLUOROPHENYL GROUP
    GREGORY, DH
    GERIG, JT
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1989, 10 (05) : 711 - 717
  • [4] Optimizing molecular models through force-field parameterization
    Kirschner, Karl
    Huelsmann, Marco
    Kraemer, Andreas
    Kraemer-Fuhrmann, Ottmar
    Reith, Dirk
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [5] CLASSICAL FORCE-FIELD PARAMETERIZATION FOR THE ORTHO-PHOSPHATE ION
    BECKEL, CL
    TAFOYA, RA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (03): : 320 - 320
  • [6] Automated chemical perception for force field parameterization
    Bannan, Caitlin
    Bayly, Christopher
    Gilson, Michael
    Wang, Lee-Ping
    Shirts, Michael
    Chodera, John
    Mobley, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [7] Automated conformational energy fitting for force-field development
    Guvench, Olgun
    MacKerell, Alexander D., Jr.
    JOURNAL OF MOLECULAR MODELING, 2008, 14 (08) : 667 - 679
  • [8] Automated conformational energy fitting for force-field development
    Olgun Guvench
    Alexander D. MacKerell
    Journal of Molecular Modeling, 2008, 14 : 667 - 679
  • [9] Machine learning software for automated force field parameterization
    Zhong, Xiang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [10] Force-field parameterization of the galactic cosmic ray spectrum: Validation for Forbush decreases
    Usoskin, I. G.
    Kovaltsov, G. A.
    Adriani, O.
    Barbarino, G. C.
    Bazilevskaya, G. A.
    Bellotti, R.
    Boezio, M.
    Bogomolov, E. A.
    Bongi, M.
    Bonvicini, V.
    Bottai, S.
    Bruno, A.
    Cafagna, F.
    Campana, D.
    Carbone, R.
    Carlson, P.
    Casolino, M.
    Castellini, G.
    De Donato, C.
    De Santis, C.
    De Simone, N.
    Di Felice, V.
    Format, V.
    Galper, A. M.
    Karelin, A. V.
    Koldashov, S. V.
    Koldobskiy, S.
    Krutkov, S. Y.
    Kvashnin, A. N.
    Leonov, A.
    Malakhov, V.
    Marcelli, L.
    Martucci, M.
    Mayorov, A. G.
    Menn, W.
    Merge, M.
    Mikhailov, V. V.
    Mocchiutti, E.
    Monaco, A.
    Mori, N.
    Munini, R.
    Osteria, G.
    Palma, F.
    Panico, B.
    Papini, P.
    Pearce, M.
    Picozza, P.
    Pizzolotto, C.
    Ricci, M.
    Ricciarini, S. B.
    ADVANCES IN SPACE RESEARCH, 2015, 55 (12) : 2940 - 2945