Extendable periodic automorphisms of closed surfaces over the 3-sphere

被引:1
|
作者
Wang, Chao [1 ,2 ]
Wang, Weibiao [2 ]
机构
[1] East China Normal Univ, Sch Math Sci, Shanghai, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab PMMP, Shanghai, Peoples R China
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2024年 / 24卷 / 06期
基金
中国国家自然科学基金;
关键词
D O I
10.2140/agt.2024.24.3327
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A periodic automorphism of a surface E is said to be extendable over S3 3 if it extends to a periodic automorphism of the pair (E, S3) 3 ) for some possible embedding E ,! ! S3. 3 . We classify and construct all extendable automorphisms of closed surfaces, with orientation-reversing cases included. Moreover, they can all be induced by automorphisms of S3 3 on Heegaard surfaces. As a byproduct, the embeddings of surfaces into lens spaces are discussed.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] EXTENDING AUTOMORPHISMS OF THE GENUS-2 SURFACE OVER THE 3-SPHERE
    Funayoshi, Kenta
    Koda, Yuya
    QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (01): : 175 - 196
  • [2] On invariants of surfaces in the 3-sphere
    Kurihara, Hiroaki
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2023, 32 (06)
  • [3] Helicoidal flat surfaces in the 3-sphere
    Manfio, Fernando
    dos Santos, Joao Paulo
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (01) : 127 - 136
  • [4] Index of minimal surfaces in the 3-sphere
    Morozov, E. A.
    Penskoi, A. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2023, 78 (02) : 396 - 398
  • [5] Automorphisms of the 3-sphere that preserve a genus two Heegaard splitting
    Scharlemann, M
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2004, 10 : 503 - 514
  • [6] PERIODIC HOMEOMORPHISMS OF 3-SPHERE AND RELATED SPACES
    KIM, PK
    MICHIGAN MATHEMATICAL JOURNAL, 1974, 21 (01) : 1 - 6
  • [7] Deformations of Symmetric CMC Surfaces in the 3-Sphere
    Heller, Sebastian
    Schmitt, Nicholas
    EXPERIMENTAL MATHEMATICS, 2015, 24 (01) : 65 - 75
  • [8] A complete invariant for connected surfaces in the 3-sphere
    Bellettini, Giovanni
    Paolini, Maurizio
    Wang, Yi-Sheng
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (01)
  • [9] DEGREE 3 ALGEBRAIC MINIMAL SURFACES IN THE 3-SPHERE
    Joe S.Wang
    ActaMathematicaScientia, 2012, 32 (06) : 2065 - 2084
  • [10] Willmore surfaces in 3-sphere foliated by circles
    Lu, Ying
    Wang, Changping
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 701 : 221 - 244