ARSOD-YOLO: Enhancing Small Target Detection for Remote Sensing Images

被引:1
|
作者
Qiu, Yijuan [1 ,2 ,3 ]
Zheng, Xiangyue [1 ,2 ,3 ]
Hao, Xuying [1 ,2 ,3 ]
Zhang, Gang [1 ,2 ,3 ]
Lei, Tao [1 ,2 ,3 ]
Jiang, Ping [1 ,2 ,3 ]
机构
[1] Natl Lab Adapt Opt, Chengdu 610209, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 101408, Peoples R China
[3] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Peoples R China
关键词
object detection; remote sensing; small object; feature fusion; OBJECT DETECTION;
D O I
10.3390/s24237472
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Remote sensing images play a vital role in domains including environmental monitoring, agriculture, and autonomous driving. However, the detection of targets in remote sensing images remains a challenging task. This study introduces innovative methods to enhance feature extraction, feature fusion, and model optimization. The Adaptive Selective Feature Enhancement Module (AFEM) dynamically adjusts feature weights using GhostModule and sigmoid functions, thereby enhancing the accuracy of small target detection. Moreover, the Adaptive Multi-scale Convolution Kernel Feature Fusion Module (AKSFFM) enhances feature fusion through multi-scale convolution operations and attention weight learning mechanisms. Moreover, our proposed ARSOD-YOLO optimized the network architecture, component modules, and loss functions based on YOLOv8, enhancing outstanding small target detection capabilities while preserving model efficiency. We conducted experiments on the VEDAI and AI-TOD datasets, showcasing the excellent performance of ARSOD-YOLO. Our algorithm achieved an mAP50 of 74.3% on the VEDAI dataset, surpassing the YOLOv8 baseline by 3.1%. Similarly, on the AI-TOD dataset, the mAP50 reached 47.8%, exceeding the baseline network by 6.1%.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] RN-YOLO: A Small Target Detection Model for Aerial Remote-Sensing Images
    Wang, Ke
    Zhou, Hao
    Wu, Hao
    Yuan, Guowu
    ELECTRONICS, 2024, 13 (12)
  • [2] FFCA-YOLO for Small Object Detection in Remote Sensing Images
    Zhang, Yin
    Ye, Mu
    Zhu, Guiyi
    Liu, Yong
    Guo, Pengyu
    Yan, Junhua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [3] SCM-YOLO for Lightweight Small Object Detection in Remote Sensing Images
    Qiang, Hao
    Hao, Wei
    Xie, Meilin
    Tang, Qiang
    Shi, Heng
    Zhao, Yixin
    Han, Xiaoteng
    REMOTE SENSING, 2025, 17 (02)
  • [4] YOLO-FSD: An Improved Target Detection Algorithm on Remote-Sensing Images
    Zhao, Hu
    Chu, Kaibin
    Zhang, Ji
    Feng, Chengtao
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 30751 - 30764
  • [5] A small attentional YOLO model for landslide detection from satellite remote sensing images
    Libo Cheng
    Jia Li
    Ping Duan
    Mingguo Wang
    Landslides, 2021, 18 : 2751 - 2765
  • [6] A small attentional YOLO model for landslide detection from satellite remote sensing images
    Cheng, Libo
    Li, Jia
    Duan, Ping
    Wang, Mingguo
    LANDSLIDES, 2021, 18 (08) : 2751 - 2765
  • [7] Lightweight small target detection based on aerial remote sensing images
    Li, Muzi
    JOURNAL OF MEASUREMENTS IN ENGINEERING, 2024, 12 (02) : 227 - 242
  • [8] Recursive Neural Network: Small Target Detection in Remote Sensing Images
    Yu, Changlin
    Zhang, Juchao
    Sun, Zhongyu
    Pang, Zaixiang
    Xu, Changxian
    Sun, Zhongbo
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2024, PT III, 2025, 15203 : 73 - 84
  • [9] Transfer Learning for Object Detection in Remote Sensing Images with YOLO
    Devi, A.
    Reddy, K. Venkateswara
    Bangare, Sunil L.
    Pande, Deepti S.
    Balaji, S. R.
    Badhoutiya, Arti
    Shrivastava, Anurag
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 980 - 989
  • [10] LGA-YOLO for Vehicle Detection in Remote Sensing Images
    Zhang, Yin
    Wang, Weiyang
    Ye, Mu
    Yan, Junhua
    Yang, Rong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 5317 - 5330