Deep learning models for CT image classification: a comprehensive literature review

被引:0
|
作者
Ahmad, Isah Salim [1 ,2 ]
Dai, Jingjing [1 ,2 ]
Xie, Yaoqin [1 ,2 ]
Liang, Xiaokun [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Computed tomography (CT); deep learning (DL); foundation models; coronavirus disease 2019 (COVID-19); nodule detection; LUNG NODULE CLASSIFICATION; COMPUTER-AIDED DETECTION; PULMONARY NODULES; TOMOGRAPHY; COVID-19; SEGMENTATION; DIAGNOSIS; SYSTEM; CANCER; IDENTIFICATION;
D O I
10.21037/qims-24-1400
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background and Objective: Computed tomography (CT) imaging plays a crucial role in the early detection and diagnosis of life-threatening diseases, particularly in respiratory illnesses and oncology. The rapid advancement of deep learning (DL) has revolutionized CT image analysis, enhancing diagnostic accuracy and efficiency. This review explores the impact of advanced DL methodologies in CT imaging, with a particular focus on their applications in coronavirus disease 2019 (COVID-19) detection and lung nodule classification. Methods: A comprehensive literature search was conducted, examining the evolution of DL architectures in medical imaging from conventional convolutional neural networks (CNNs) to sophisticated foundational models (FMs). We reviewed publications from major databases, focusing on developments in CT image analysis using DL from 2013 to 2023. Our search criteria included all types of articles, with a focus on peer- reviewed research papers and review articles in English. Key Content and Findings: The review reveals that DL, particularly advanced architectures like FMs, has transformed CT image analysis by streamlining interpretation processes and enhancing diagnostic capabilities. We found significant advancements in addressing global health challenges, especially during the COVID-19 pandemic, and in ongoing efforts for lung cancer screening. The review also addresses technical challenges in CT image analysis, including data variability, the need for large high-quality datasets, and computational demands. Innovative strategies such as transfer learning, data augmentation, and distributed computing are explored as solutions to these challenges. Conclusions: This review underscores the pivotal role of DL in advancing CT image analysis, particularly for COVID-19 and lung nodule detection. The integration of DL models into clinical workflows shows promising potential to enhance diagnostic accuracy and efficiency. However, challenges remain in areas of interpretability, validation, and regulatory compliance. The review advocates for continued research, interdisciplinary collaboration, and ethical considerations as DL technologies become integral to clinical practice. While traditional imaging techniques remain vital, the integration of DL represents a significant advancement in medical diagnostics, with far-reaching implications for future research, clinical practice, and healthcare policy.
引用
收藏
页码:962 / 1011
页数:50
相关论文
共 50 条
  • [1] Deep learning based HEp-2 image classification: A comprehensive review
    Rahman, Saimunur
    Wang, Lei
    Sun, Changming
    Zhou, Luping
    MEDICAL IMAGE ANALYSIS, 2020, 65
  • [2] Hyperspectral Image Classification With Deep Learning Models
    Yang, Xiaofei
    Ye, Yunming
    Li, Xutao
    Lau, Raymond Y. K.
    Zhang, Xiaofeng
    Huang, Xiaohui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5408 - 5423
  • [3] Deep learning techniques in CT image reconstruction and segmentation: a systematic literature review
    Devi, Manju
    Singh, Sukhdip
    Tiwari, Shailendra
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2023, 20 (5-10) : 790 - 828
  • [4] A comprehensive review of image denoising in deep learning
    Jebur, Rusul Sabah
    Zabil, Mohd Hazli Bin Mohamed
    Hammood, Dalal Adulmohsin
    Cheng, Lim Kok
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (20) : 58181 - 58199
  • [5] A comprehensive review on MRI to CT and MRI to PET image synthesis using deep learning
    Meharban, M. S.
    Sabu, M. K.
    Santhanakrishnan, T.
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2023, 43 (03) : 207 - 232
  • [6] A comprehensive literature review on image captioning methods and metrics based on deep learning technique
    Ahmad Sami Al-Shamayleh
    Omar Adwan
    Mohammad A. Alsharaiah
    Abdelrahman H. Hussein
    Qasem M. Kharma
    Christopher Ifeanyi Eke
    Multimedia Tools and Applications, 2024, 83 : 34219 - 34268
  • [7] A comprehensive literature review on image captioning methods and metrics based on deep learning technique
    Al-Shamayleh, Ahmad Sami
    Adwan, Omar
    Alsharaiah, Mohammad A.
    Hussein, Abdelrahman H.
    Kharma, Qasem M.
    Eke, Christopher Ifeanyi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (12) : 34219 - 34268
  • [8] A review on lung carcinoma segmentation and classification using CT image based on deep learning
    Poonkodi S.
    Kanchana M.
    International Journal of Intelligent Systems Technologies and Applications, 2022, 20 (05) : 394 - 413
  • [9] The future of skin cancer diagnosis: a comprehensive systematic literature review of machine learning and deep learning models
    Adamu, Shamsuddeen
    Alhussian, Hitham
    Aziz, Norshakirah
    Abdulkadir, Said Jadid
    Alwadin, Ayed
    Imam, Abdullahi Abubakar
    Abdullahi, Mujaheed
    Garba, Aliyu
    Saidu, Yahaya
    COGENT ENGINEERING, 2024, 11 (01):
  • [10] Research on deep learning models for hyperspectral image classification
    Pu, Shengliang
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (01):