Optimization of Marginal Price Forecasting in Mexico through applying Machine Learning Models

被引:0
|
作者
Escobar, Marcos Fidel Guzman [1 ]
Lasserre, Alberto Alfonso Aguilar [1 ]
Argumedo, Marco Julio Del Moral [1 ]
Flores, Nicasio Hernandez [2 ]
Figueroa, Gustavo Arroyo [2 ]
机构
[1] Natl Technol Inst Mexico, Technol Inst Orizaba, Orizaba, Veracruz, Mexico
[2] Natl Inst Elect & Clean Energies INEEL, Cuernavaca, Morelos, Mexico
关键词
Recurrent Neural Networks; Statistical Analysis; Local; Marginal Price Forecast; !text type='Python']Python[!/text] code;
D O I
10.61467/2007.1558.2024.v15i4.493
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Local Marginal Price (LMP) represents the value of energy at a specific moment and location, and its proper management is crucial for the development of the country's strategic sectors. This study compares the ADR, RPSG, SARIMA, and LSTM-H models for predicting the LMP, achieving an approximate effectiveness of 88%. By implementing it in 28 nodes of the three interconnection systems (SIN, BCA, and BCS) in Mexico, the results of the enhanced LSTM network analysis are presented through sensitivity analysis and an ensemble with Prophet, yielding the following metrics: MAE: 0.0189, MSE: 0.0101, RMSE: 0.1007, and MAPE: 12.18, at node 05PAR-115 in Hidalgo del Parral, Chihuahua. This model can construct tree diagrams (ADR) that identify the critical variables for predicting the LMP of any node, significantly contributing to the accuracy of predictive analysis models.
引用
收藏
页码:19 / 41
页数:23
相关论文
共 50 条
  • [1] FORECASTING UNDER APPLYING MACHINE LEARNING AND STATISTICAL MODELS
    Elhag, Azhari A.
    Abu-Zinadah, Hanaa
    Elhag, Azhari A. (a.alhag@tu.edu.sa), 1600, Serbian Society of Heat Transfer Engineers (24):
  • [2] FORECASTING UNDER APPLYING MACHINE LEARNING AND STATISTICAL MODELS
    Elhag, Azhari A.
    Abu-Zinadah, Hanaa
    THERMAL SCIENCE, 2020, 24 : S131 - S137
  • [3] Combining Machine Learning and Optimization for Efficient Price Forecasting
    Helseth, Arild
    Sveen, Eivind Bekken
    2020 17TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM, 2020,
  • [4] Commodity price forecasting via machine learning models
    Ludovico, Sergio Nunes
    Salgado, Ricardo Menezes
    Beijo, Luiz Alberto
    Miguel, Eliseu Cesar
    Rezende, Marcelo Lacerda
    SIGMAE, 2022, 11 (02): : 45 - 69
  • [5] Applying machine learning to electricity price forecasting in simulated energy market scenarios
    Nitsch, Felix
    Schimeczek, Christoph
    Bertsch, Valentin
    ENERGY REPORTS, 2024, 12 : 5268 - 5279
  • [6] Impact of Hyperparameter Tuning on Machine Learning Models in Stock Price Forecasting
    Hoque, Kazi Ekramul
    Aljamaan, Hamoud
    IEEE ACCESS, 2021, 9 : 163815 - 163830
  • [7] Univariate and Multivariate Machine Learning Forecasting Models on the Price Returns of Cryptocurrencies
    Miller, Dante
    Kim, Jong-Min
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2021, 14 (10)
  • [8] Exploring House Price Forecasting through Machine Learning and Data Preprocessing
    Vaishnavi, A. V. S. S. P. L.
    Raghavendra, G. Gopi Krishna
    Jilan, Mohammed
    Chowdary, A. Pranya
    Singh, Rosen
    Karthikeyan, C.
    2024 4TH INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2024, 2024, : 304 - 310
  • [9] Machine learning gold price forecasting
    Jin, Bingzi
    Xu, Xiaojie
    INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, 2025,
  • [10] Applying machine learning methods to avalanche forecasting
    Pozdnoukhov, A.
    Purves, R. S.
    Kanevski, M.
    ANNALS OF GLACIOLOGY, VOL 49, 2008, 2008, 49 : 107 - +