The end-to-end simulator of the ATHENA X-IFU Cryogenic AntiCoincidence detector (CryoAC)

被引:1
|
作者
D'Andrea, M. [1 ]
Macculi, C. [1 ]
Lotti, S. [1 ]
Piro, L. [1 ]
Argan, A. [2 ]
Minervini, G. [2 ]
Torrioli, G. [3 ]
Chiarello, F. [2 ]
Barusso, L. Ferrari [4 ]
Gatti, F. [4 ,5 ]
Rigano, M. [4 ,5 ]
机构
[1] INAF IAPS, Via Fosso Cavaliere 100, I-00133 Rome, Italy
[2] INAF Headquarters, Viale Parco Mellini 84, I-00136 Rome, Italy
[3] CNR IFN Roma, Via Fosso Cavaliere 100, I-00133 Rome, Italy
[4] Univ Genoa, Via Dodecaneso 33, I-16146 Genoa, Italy
[5] INFN Genoa, Via Dodecaneso 33, I-16146 Genoa, Italy
关键词
ATHENA; X-IFU; CryoAC; Cryogenic detectors; Background; Anticoincidence; TES; SQUID; Trigger; Geant4;
D O I
10.1117/12.3017794
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The X-IFU is one of the two instruments of ATHENA, the next ESA large X-ray observatory. It is a cryogenic spectrometer based on an array of TES microcalorimeters. To reduce the particle background, the TES array works in combination with a Cryogenic AntiCoincidence detector (CryoAC). The CryoAC is a 4-pixel detector, based on similar to 1 cm(2) silicon absorbers sensed by Ir/Au TES. It is required to have a wide energy bandwidth (from 20 keV to similar to 1 MeV), high efficiency (< 0.014% missed particles), low dead-time (< 1%) and good time-tagging accuracy (10 mu s at 1 sigma). An end-to-end simulator of the CryoAC detector has been developed both for design and performance assessment, consisting of several modules. First, the in-flight flux of background particles is evaluated by Geant4 simulations. Then, the current flow in the TES is evaluated by solving the electro-thermal equations of microcalorimeters, and the detector output signal is generated by simulating the SQUID FLL dynamics. Finally, the output is analyzed by a high-efficiency trigger algorithm, producing the simulated CryoAC telemetry. Here, we present in detail this end-to-end simulator, and how we are using it to define the new CryoAC baseline configuration in the new Athena context.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] The Cryogenic AntiCoincidence Detector for ATHENA X-IFU: The Project Status
    Macculi, C.
    Argan, A.
    Brienza, D.
    D'Andrea, M.
    Lotti, S.
    Minervini, G.
    Piro, L.
    Biasotti, M.
    Barusso, L.
    Gatti, F.
    Rigano, M.
    Torrioli, G.
    Fiorini, M.
    Molendi, S.
    Uslenghi, M.
    Cavazzuti, E.
    Volpe, A.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (1-2) : 416 - 424
  • [2] The Demonstration Model of the ATHENA X-IFU Cryogenic AntiCoincidence Detector
    D'Andrea, M.
    Macculi, C.
    Torrioli, G.
    Argan, A.
    Brienza, D.
    Lotti, S.
    Minervini, G.
    Piro, L.
    Biasotti, M.
    Barusso, L. Ferrari
    Gatti, F.
    Rigano, M.
    Volpe, A.
    Battistelli, E. S.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (1-2) : 65 - 72
  • [3] The Demonstration Model of the ATHENA X-IFU Cryogenic AntiCoincidence Detector
    M. D’Andrea
    C. Macculi
    G. Torrioli
    A. Argan
    D. Brienza
    S. Lotti
    G. Minervini
    L. Piro
    M. Biasotti
    L. Ferrari Barusso
    F. Gatti
    M. Rigano
    A. Volpe
    E. S. Battistelli
    Journal of Low Temperature Physics, 2020, 199 : 65 - 72
  • [4] The Cryogenic AntiCoincidence Detector for ATHENA X-IFU: a program overview
    Macculi, C.
    Argan, A.
    D'Andrea, M.
    Lotti, S.
    Laurenza, M.
    Piro, L.
    Biasotti, M.
    Corsini, D.
    Gatti, F.
    Torrioli, G.
    Fiorini, M.
    Molendi, S.
    Uslenghi, M.
    Mineo, T.
    Bulgarelli, A.
    Fioretti, V.
    Cavazzuti, E.
    SPACE TELESCOPES AND INSTRUMENTATION 2016: ULTRAVIOLET TO GAMMA RAY, 2016, 9905
  • [5] The Cryogenic AntiCoincidence Detector for ATHENA X-IFU: The Project Status
    C. Macculi
    A. Argan
    D. Brienza
    M. D’Andrea
    S. Lotti
    G. Minervini
    L. Piro
    M. Biasotti
    L. Ferrari Barusso
    F. Gatti
    M. Rigano
    G. Torrioli
    M. Fiorini
    S. Molendi
    M. Uslenghi
    E. Cavazzuti
    A. Volpe
    Journal of Low Temperature Physics, 2020, 199 : 416 - 424
  • [6] The TES-Based Cryogenic AntiCoincidence Detector of ATHENA X-IFU: Validation of the Thermal End-to-End Simulator Toward the Updated Demonstration Model (DM 1.1)
    D'Andrea, Matteo
    Macculi, Claudio
    Lotti, Simone
    Piro, Luigi
    Argan, Andrea
    Minervini, Gabriele
    Torrioli, Guido
    Chiarello, Fabio
    Ferrari Barusso, Lorenzo
    Celasco, Edvige
    Gatti, Flavio
    Grosso, Daniele
    Rigano, Manuela
    Brienza, Daniele
    Cavazzuti, Elisabetta
    Volpe, Angela
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2025, 35 (05)
  • [7] Crosstalk in an FDM Laboratory Setup and the Athena X-IFU End-to-End Simulator
    R. den Hartog
    C. Kirsch
    C. de Vries
    H. Akamatsu
    T. Dauser
    P. Peille
    E. Cucchetti
    B. Jackson
    S. Bandler
    S. Smith
    J. Wilms
    Journal of Low Temperature Physics, 2018, 193 : 533 - 538
  • [8] Crosstalk in an FDM Laboratory Setup and the Athena X-IFU End-to-End Simulator
    den Hartog, R.
    Kirsch, C.
    de Vries, C.
    Akamatsu, H.
    Dauser, T.
    Peille, P.
    Cucchetti, E.
    Jackson, B.
    Bandler, S.
    Smith, S.
    Wilms, J.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2018, 193 (3-4) : 533 - 538
  • [9] The Cryogenic AntiCoincidence detector for ATHENA X-IFU: advancement in the project.
    Macculi, C.
    Argan, A.
    Brienza, D.
    D'Andrea, M.
    Lotfi, S.
    Minervini, G.
    Piro, L.
    Biasotti, M.
    Barusso, L. Ferrari
    Gatti, F.
    Rigano, M.
    Chiarello, F.
    Torrioli, G.
    Fiorini, M.
    Uslenghi, M.
    Cavazzuti, E.
    Puccetti, S.
    Volpe, A.
    SPACE TELESCOPES AND INSTRUMENTATION 2020: ULTRAVIOLET TO GAMMA RAY, 2021, 11444
  • [10] ATHENA X-IFU Demonstration Model: First Joint Operation of the Main TES Array and its Cryogenic AntiCoincidence Detector (CryoAC)
    M. D’Andrea
    K. Ravensberg
    A. Argan
    D. Brienza
    S. Lotti
    C. Macculi
    G. Minervini
    L. Piro
    G. Torrioli
    F. Chiarello
    L. Ferrari Barusso
    M. Biasotti
    G. Gallucci
    F. Gatti
    M. Rigano
    H. Akamatsu
    J. Dercksen
    L. Gottardi
    F. de Groote
    R. den Hartog
    J.-W. den Herder
    R. Hoogeveen
    B. Jackson
    A. McCalden
    S. Rosman
    E. Taralli
    D. Vaccaro
    M. de Wit
    J. Chervenak
    S. Smith
    N. Wakeham
    Journal of Low Temperature Physics, 2022, 209 : 433 - 440