Functionally graded lattice structures for energy absorption: Numerical analysis and experimental validation

被引:0
|
作者
Coluccia, Antonio [1 ]
Meyer, Guillaume [2 ,3 ]
Liseni, Stefania [1 ]
Mittelstedt, Christian [2 ,3 ]
De Pasquale, Giorgio [1 ]
机构
[1] Politecn Torino, Dept Mech & Aerosp Engn, Smart Struct & Syst Lab, Corso Duca Abruzzi 24, Turin, Italy
[2] Tech Univ Darmstadt, Dept Mech Engn, Lightweight Engn & Struct Mech, Darmstadt, Germany
[3] Tech Univ Darmstadt, Addit Mfg Ctr, Darmstadt, Germany
关键词
Lattice structures; Energy absorption; Lightweight structures; Additive manufacturing; Numerical modeling; Cellular materials; MECHANICAL-PROPERTIES;
D O I
10.1016/j.compstruct.2025.119013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Lattice structures show a high potential in fields where high structural performances are necessary, such as automotive and aerospace engineering. These structures offer excellent stiffness and strength, while being able to keep their weight limited: main outcome of such characteristics are appreciable specific mechanical properties. Since lattice structures are mostly produced using additive manufacturing, a large number of shapes and topologies are available. Moreover, it is possible to control geometrical features, like thickness of the struts, eventual reinforcements and in general the local relative density of the structure, through mathematical and analytical considerations. The principal aim of the model developed in this paper is the control over the thickness of the struts of a lattice structure: samples made of lattice with different topologies are object to a functionally grading process able to redefine the thickness of each strut of the sample based on homogenizing the stress state; as a main result, energy absorption and specific energy absorption levels are increased. Two grading processes are presented: the first one considers relative density into the relationship for the reformulation of the thickness value, together with an average level of the Von Mises stress, while the second only considers the stresses. A validating experimental campaign has been finally performed: graded samples, with both processes, and ungraded samples are produced via L-PBF (laser powder bed fusion) and tested under compression in order to compare their energy absorption levels.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Functionally graded lattice structures with tailored stiffness and energy absorption
    Daynes, Stephen
    Feih, Stefanie
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2025, 285
  • [2] Energy Absorption and Mechanical Performance of Functionally Graded Soft-Hard Lattice Structures
    Rahman, Hafizur
    Yarali, Ebrahim
    Zolfagharian, Ali
    Serjouei, Ahmad
    Bodaghi, Mahdi
    MATERIALS, 2021, 14 (06)
  • [3] Superior strength and energy absorption capability of LPBF metallic functionally graded lattice structures
    Waqar, Saad
    Hussain, Sajjad
    Ren, Chuanxi
    Wang, Meng
    Nazir, Aamer
    Dan, Xingdong
    Wang, Chunjin
    Chen, Zibin
    THIN-WALLED STRUCTURES, 2024, 205
  • [4] Mechanical properties and energy absorption capabilities of functionally graded lattice structures: Experiments and simulations
    Bai, Long
    Gong, Cheng
    Chen, Xiaohong
    Sun, Yuanxi
    Xin, Liming
    Pu, Huayan
    Peng, Yan
    Luo, Jun
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 182 (182)
  • [5] A review on functionally graded structures and materials for energy absorption
    Xu, Fengxiang
    Zhang, Xiong
    Zhang, Hui
    ENGINEERING STRUCTURES, 2018, 171 : 309 - 325
  • [6] Mechanical and energy absorption properties of functionally graded lattice structures based on minimal curved surfaces
    Xiangyu Ma
    David Z. Zhang
    Miao Zhao
    Junjie Jiang
    Fangqiong Luo
    Hailun Zhou
    The International Journal of Advanced Manufacturing Technology, 2022, 118 : 995 - 1008
  • [7] Mechanical and energy absorption properties of functionally graded lattice structures based on minimal curved surfaces
    Ma, Xiangyu
    Zhang, David Z.
    Zhao, Miao
    Jiang, Junjie
    Luo, Fangqiong
    Zhou, Hailun
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 118 (3-4): : 995 - 1008
  • [8] Impact energy absorption of functionally graded chiral honeycomb structures
    Qi, Dexing
    Lu, Qiuyu
    He, ChunWang
    Li, Ying
    Wu, Wenwang
    Xiao, Dengbao
    EXTREME MECHANICS LETTERS, 2019, 32
  • [9] Dynamic response and energy absorption of functionally graded porous structures
    Chen, Da
    Kitipornchai, Sritawat
    Yang, Jie
    MATERIALS & DESIGN, 2018, 140 : 473 - 487
  • [10] Impact resistance and energy absorption of functionally graded cellular structures
    Wang, Xiaokai
    Zheng, Zhijun
    Yu, Jilin
    Wang, Changfeng
    ADVANCES IN MATERIAL ENGINEERING AND MECHANICAL ENGINEERING, 2011, 69 : 73 - 78