Frechet Discrete Gradient and Hessian Operators on Infinite-Dimensional Spaces

被引:0
|
作者
Moreschini, Alessio [1 ]
Goksu, Gokhan [2 ]
Parisini, Thomas [1 ,3 ,4 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London, England
[2] Yildiz Tech Univ, Dept Math Engn, Istanbul, Turkiye
[3] Univ Cyprus, KIOS Res & Innovat Ctr Excellence, Nicosia, Cyprus
[4] Univ Trieste, Dipartimento Ingn & Architettura, Trieste, Italy
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 05期
关键词
Infinite-dimensional spaces; Geometric integration on Banach spaces; Discrete gradients; Frechet derivative; Structural preservation; Infinite-dimensional convex optimization;
D O I
10.1016/j.ifacol.2024.07.067
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Benefiting from the notion of Frechet derivatives, we define Frechet discrete operators, such as gradient and Hessian, on infinite-dimensional spaces. The Frechet discrete gradient expands upon the concept of the discrete gradient of Gonzalez (1996) for finite-dimensional spaces. The Frechet discrete Hessian elevates the property to second-order representations of the Frechet derivative. By leveraging these operators, we offer an initial exploration of discrete gradient methods for convex optimization in infinite-dimensional spaces. Under mild conditions on the objective functional, we establish the convergence of any sequence generated by the proposed Frechet discrete gradient method, regardless of the choice of the finite learning rate. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:78 / 83
页数:6
相关论文
共 50 条