Radius estimates for nearly stable H-hypersurfaces of dimension 2, 3, and 4

被引:0
|
作者
Tinaglia, G. [1 ]
Zhou, A. [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
关键词
Constant mean curvature; stable; radius estimates; EMBEDDED MINIMAL-SURFACES; MEAN-CURVATURE SURFACES; FIXED GENUS; SPACE; LAMINATION; UNIQUENESS; MANIFOLDS;
D O I
10.1142/S1793525325500013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the geometry of complete constant mean curvature (CMC) hypersurfaces immersed in an (n + 1)-dimensional Riemannian manifold N (n = 2, 3 and 4) with sectional curvatures uniformly bounded from below. We generalise radius estimates given by Rosenberg [Constant mean curvature surfaces in homogeneously regular 3-manifolds, Bull. Aust. Math. Soc. 74 (2006) 227-238] (n = 2) and by Elbert et al. [Stable constant mean curvature hypersurfaces, Proc. Amer. Math. Soc. 135 (2007) 3359-3366] and Cheng [On constant mean curvature hypersurfaces with finite index, Arch. Math. (Basel) 86 (2006) 365-374] (n = 3, 4) to nearly stable CMC hypersurfaces immersed in N. We also prove that certain CMC hypersurfaces effectively embedded in N must be proper.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A note on area estimates for stable H-hypersurfaces and applications
    Ranieri, Mareos
    Sampaio, Elaine
    Vitorio, Feliciano
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (02)
  • [2] Sharp eigenvalue estimates of closed H-hypersurfaces in locally symmetric spaces
    Eudes L. de Lima
    Henrique F. de Lima
    Fábio R. dos Santos
    Marco A. L. Velásquez
    Czechoslovak Mathematical Journal, 2019, 69 : 969 - 981
  • [3] SHARP EIGENVALUE ESTIMATES OF CLOSED H-HYPERSURFACES IN LOCALLY SYMMETRIC SPACES
    de Lima, Eudes L.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco A. L.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (04) : 969 - 981
  • [4] δ#(2,2)-Ideal Centroaffine Hypersurfaces of Dimension 4
    Yildirim, Handan
    Vrancken, Luc
    TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (06): : 1075 - 1104
  • [5] Curvature Estimates for Stable Minimal Hypersurfaces in R4 and R5
    Qing Chen
    Annals of Global Analysis and Geometry, 2001, 19 : 177 - 184
  • [6] Curvature estimates for stable minimal hypersurfaces in R4 and R5
    Chen, Q
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2001, 19 (02) : 177 - 184
  • [7] ESTIMATES FOR MAXIMAL FUNCTIONS ASSOCIATED TO HYPERSURFACES IN R3 WITH HEIGHT h < 2: PART I
    Buschenhenke, Stefan
    Dendrinos, Spyridon
    Ikromov, Isroil A.
    Mueller, Detlef
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (02) : 1363 - 1406
  • [8] On maximum spectral radius of {H(3, 3), H(4, 3)}-free graphs
    Rehman, Amir
    Pirzada, S.
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2024, 16 (01) : 124 - 138
  • [9] Hessian Estimates for the Sigma-2 Equation in Dimension 3
    Warren, Micah
    Yuan, Yu
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (03) : 305 - 321
  • [10] HYPERSURFACES OF THE NEARLY KAHLER TWISTOR SPACES CP3 AND F1,2
    Deschamps, Guillaume
    Loubeau, Eric
    TOHOKU MATHEMATICAL JOURNAL, 2021, 73 (04) : 627 - 642