Stochastic differential equations with Holder-Dini drift and driven by α-stable processes

被引:0
|
作者
Tian, Rongrong [1 ]
Wei, Jinlong [2 ]
Duan, Jinqiao [3 ]
机构
[1] Wuhan Univ Technol, Sch Math & Stat, Wuhan 430070, Peoples R China
[2] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R China
[3] Great Bay Univ, Coll Sci, Dongguan 523000, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic differential equation; alpha-stable process; fractional Fokker-Planck-Kolmogorov equation; PATHWISE UNIQUENESS; SDES; REGULARITY; EXISTENCE;
D O I
10.1142/S0219493724500370
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the Holder-Dini regularity for a class of fractional Fokker-Planck-Kolmogorov equations. Then, by applying the Ito-Tanaka trick, we obtain the unique strong solvability of time inhomogeneous stochastic differential equations with drift coefficients in L-t(infinity)(C-b,d(beta,rho)) for beta = 1 - alpha/2 and driven by alpha-stable processes.
引用
收藏
页数:22
相关论文
共 50 条