ZnO/SnO2 based composite heterostructure for NO2 gas sensing properties

被引:0
|
作者
Er, Irmak Karaduman [1 ]
Uysal, Samet [2 ,3 ]
Ates, Aytunc [2 ,3 ]
Acar, Selim [4 ]
机构
[1] Cankiri Karatekin Univ, Eldivan Med Serv, Vocat Sch, Dept Med Serv & Tech, TR-18100 Cankiri, Turkiye
[2] Ankara Yildirim Beyazit Univ, Dept Met & Mat Engn, Ankara, Turkiye
[3] Ankara Yildirim Beyazit Univ, Engn & Nat Sci Fac, Ankara, Turkiye
[4] Gazi Univ, Fac Sci, Dept Phys, Ankara, Turkiye
关键词
Gas sensor; Sol-gel dip coating; NO; 2; gas; SnO2/ZnO; ZNO; NANOPARTICLES; PERFORMANCE; MECHANISM; THICKNESS; SENSORS;
D O I
10.1016/j.ceramint.2024.11.041
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In recent years, interest in heterostructures and research on them has been increasing day by day. While semiconductors mainly exhibit different characteristics, they can exhibit different characteristics when they come together to form a heterostructure, and investigating the reasons for these is of great interest. For this purpose, in this study, such a hetero structure (ZnO/SnO2) was obtained by the Sol-Gel Dip Coating (SGDC) combined method and its effects on its characteristics against NO2 gas were tried to be examined. In this study, SnO2/ZnO composite heterostructures were grown by SGDC method. In this sense, this study is a first in the literature in terms of enlarging this structure with the SGDC technique. The number of SnO2 cycles was kept constant at 1 cycles and the ZnO layers were at different cycles as 1, 2, 3 and 5. The effect of ZnO cycles number on structural, morphological and most importantly NO2 gas detection properties was investigated in the formed heterostructures. In the XRD results, both ZnO and SnO2 peaks were observed and it was determined that these peaks belonged to the hexagonal wurtzite phase for ZnO and to the tetragonal rutile phase for SnO2. The lattice strain and crystallite size were calculated using Williamson-Hall and Scherrer method. The SEM images of ZnO-SnO2 manifest the change in the microstructure with increasing ZnO layer. The microstructure consisted of thin crystalline plates and small round-shape particles. The nano plates and walls shape and size changed with increasing ZnO layers. The operating temperature was defined as 165 degrees C for all sensors from NO2 gas sensing measurements. The responses of 1 ppm NO2 gas concentrations were calculated as 20 %, 201 %, 1078 % and 676 % for Z1S1, Z2S1, Z3S1 and Z5S1 heterosturucture respectively.
引用
收藏
页码:623 / 635
页数:13
相关论文
共 50 条
  • [1] Sputtered SnO2/ZnO Heterostructures for Improved NO2 Gas Sensing Properties
    Sharma, Bharat
    Sharma, Ashutosh
    Joshi, Monika
    Myung, Jae-ha
    CHEMOSENSORS, 2020, 8 (03)
  • [2] Room temperature highly toxic NO2 gas sensors based on rootstock/scion nanowires of SnO2/ZnO, ZnO/SnO2, SnO2/SnO2 and, ZnO/ZnO
    Duoc, Vo Thanh
    Hung, Chu Manh
    Nguyen, Hugo
    Van Duy, Nguyen
    Van Hieu, Nguyen
    Hoa, Nguyen Duc
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 348 (348):
  • [3] Extrinsic oxygen defects in SnO/SnO2 heterostructure for efficient NO2 gas detection
    Kim, Jihee
    Nazarian-Samani, Masoud
    Lee, Jihyun
    Lee, Sang-kil
    Lee, Kyu Hyong
    Pi, Ji Hee
    Kim, Yu Jin
    Lee, Sanghyeon
    Lee, Wooyoung
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 399
  • [4] Composite of ZnO spheres and functionalized SnO2 nanofibers with an enhanced ethanol gas sensing properties
    Guo, Weiwei
    Wang, Zhongchang
    MATERIALS LETTERS, 2016, 169 : 246 - 249
  • [5] ZnO and ZnO/SnO2 nanofibers as resistive gas sensors for NO2 detection
    Sayago, I.
    Hontanon, E.
    Aleixandre, M.
    Fernandez, M. J.
    Santos, J. P.
    Gracia, I.
    2017 SPANISH CONFERENCE ON ELECTRON DEVICES (CDE), 2017,
  • [6] The enhanced NO2 sensing properties of SnO2 nanoparticles/reduced graphene oxide composite
    Wang, Zhenyu
    Jia, Ziguang
    Li, Qiulin
    Zhang, Xinye
    Sun, Wei
    Sun, Jiabin
    Liu, Biheng
    Ha, Benyi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 537 : 228 - 237
  • [7] Tuning the structural and NO2 gas sensing properties of SnO2 films via In doping
    Addie, Ali J.
    Batros, Shatha Sh.
    Hassan, Azhar I.
    Thin Solid Films, 2025, 818
  • [8] Effect of indium-doped SnO2 nanoparticles on NO2 gas sensing properties
    Kaur, Jaswinder
    Kumar, Rajesh
    Bhatnagar, M. C.
    SENSORS AND ACTUATORS B-CHEMICAL, 2007, 126 (02) : 478 - 484
  • [9] Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films
    Kamble, Dilly L.
    Harale, Namdev S.
    Patil, Vithoba L.
    Patil, Pramod S.
    Kadam, Laxrnan D.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2017, 127 : 38 - 46
  • [10] SnO2 Nanoslab as NO2 Sensor: Identification of the NO2 Sensing Mechanism on a SnO2 Surface
    Maeng, Sunglyul
    Kim, Sang-Woo
    Lee, Deuk-Hee
    Moon, Seung-Eon
    Kim, Ki-Chul
    Maiti, Amitesh
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (01) : 357 - 363