Likelihood for a network of gravitational-wave detectors with correlated noise

被引:0
|
作者
Cireddu, Francesco [1 ,2 ,3 ]
Wils, Milan [1 ,2 ]
Wong, Isaac C. F. [1 ,4 ,5 ]
Pang, Peter T. H. [6 ,7 ]
Li, Tjonnie G. F. [1 ,2 ,5 ]
Del Pozzo, Walter [3 ,8 ]
机构
[1] Katholieke Univ Leuven, Leuven Grav Inst, Dept Mech Engn, Celestijnenlaan 200D Box 2415, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Phys & Astron, Lab Semicond Phys, B-3001 Leuven, Belgium
[3] Univ Pisa, Dipartimento Fis E Fermi, I-56127 Pisa, Italy
[4] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, New Territories, Peoples R China
[5] Katholieke Univ Leuven, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, Dept Elect Engn ESAT, B-3001 Leuven, Belgium
[6] Nikhef, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands
[7] Univ Utrecht, Inst Gravitat & Subatom Phys GRASP, Princetonpl 1, NL-3584 CC Utrecht, Netherlands
[8] INFN, Sez Pisa, I-56127 Pisa, Italy
基金
比利时弗兰德研究基金会;
关键词
PARAMETER-ESTIMATION;
D O I
10.1103/PhysRevD.110.104060
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Einstein Telescope faces a critical data analysis challenge with correlated noise, often overlooked in current parameter estimation analyses. We address this issue by presenting the statistical formulation of the likelihood that includes correlated noise for the Einstein Telescope or any detector network. By considering varying degrees of correlation, we probe the impact of noise correlations on the parameter estimation analysis of a GW150914-like event. We show that neglecting these correlations may significantly reduce the accuracy of the chirp mass reconstruction. This emphasizes how critical a proper treatment of correlated noise is, as presented in this work, to unlocking the wealth of results promised by the Einstein Telescope.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Correlated noise in networks of gravitational-wave detectors: Subtraction and mitigation
    Thrane, E.
    Christensen, N.
    Schofield, R. M. S.
    Effler, A.
    PHYSICAL REVIEW D, 2014, 90 (02):
  • [2] Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications
    Thrane, E.
    Christensen, N.
    Schofield, R. M. S.
    PHYSICAL REVIEW D, 2013, 87 (12):
  • [3] GRAVITATIONAL-WAVE DETECTORS
    DREVER, RWP
    HOUGH, J
    PUGH, JR
    EDELSTEIN, WA
    WARD, H
    FORD, GM
    ROBERTSON, NA
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 368 (1732): : 11 - 13
  • [4] MIRROR THERMAL NOISE IN INTERFEROMETRIC GRAVITATIONAL-WAVE DETECTORS
    BONDU, F
    VINET, JY
    PHYSICS LETTERS A, 1995, 198 (02) : 74 - 78
  • [5] Laser frequency noise in next generation gravitational-wave detectors
    Cahillane, Craig
    Mansell, Georgia L.
    Sigg, Daniel
    OPTICS EXPRESS, 2021, 29 (25) : 42144 - 42161
  • [6] Omicron: A tool to characterize transient noise in gravitational-wave detectors
    Robinet, Florent
    Arnaud, Nicolas
    Leroy, Nicolas
    Lundgren, Andrew
    Macleod, Duncan
    McIver, Jessica
    SOFTWAREX, 2020, 12
  • [7] A hierarchical method for vetoing noise transients in gravitational-wave detectors
    Smith, Joshua R.
    Abbott, Thomas
    Hirose, Eiichi
    Leroy, Nicolas
    MacLeod, Duncan
    McIver, Jessica
    Saulson, Peter
    Shawhan, Peter
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (23)
  • [8] Linear projection of technical noise for interferometric gravitational-wave detectors
    Smith, JR
    Ajith, P
    Grote, H
    Hewitson, M
    Hild, S
    Lück, H
    Strain, KA
    Willke, B
    Hough, J
    Danzmann, K
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (02) : 527 - 537
  • [9] Radiative thermal noise for transmissive optics in gravitational-wave detectors
    Dwyer, Sheila
    Ballmer, Stefan W.
    PHYSICAL REVIEW D, 2014, 90 (04):
  • [10] Classification methods for noise transients in advanced gravitational-wave detectors
    Powell, Jade
    Trifiro, Daniele
    Cuoco, Elena
    Heng, Ik Siong
    Cavaglia, Marco
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (21)