An early warning system for oil wells based on improved long short-term memory network

被引:0
|
作者
Li, Jinman [1 ,2 ]
Zhang, Chunsheng [1 ]
Lin, Yang [1 ]
Liu, Yimeng [1 ]
Jin, Qingshuang [2 ]
Xiao, Tianhao [1 ]
Liu, Xiaoqi [2 ]
Zhang, Ying [2 ]
机构
[1] CNOOC China Ltd, Tianjin Branch, Tianjin, Peoples R China
[2] China Univ Petr, Coll Petr Engn, Beijing, Peoples R China
关键词
early warning system; LSTM; warning threshold; feature fusion; water cut; PRODUCTION PREDICTION; WATER; RESERVOIR; MODEL;
D O I
10.3389/feart.2024.1508776
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Timely and accurate oil well production warnings are crucial for optimizing oilfield management and enhancing economic returns. Traditional methods for predicting oil well production and early warning systems face significant limitations in terms of adaptability and accuracy. Artificial intelligence offers an effective solution to address these challenges. This study focuses on the ultra-high water cut stage in water-driven medium-to-high permeability reservoirs, where the water cut-defined as the ratio of produced water to total produced fluid-exceeds 90%. At this stage, even small fluctuations in water cut can have a significant impact on oil production, making it a critical early warning indicator. We use statistical methods to classify wells and define adaptive warning thresholds based on their unique characteristics. To further improve prediction accuracy, we introduce a Long Short-Term Memory (LSTM) model that integrates both dynamic and static well features, overcoming the limitations of traditional approaches. Field applications validate the effectiveness of the model, demonstrating reduced false alarms and missed warnings, while accurately predicting abnormal increases in water cut. The early warning system helps guide the adjustment of injection and production strategies, preventing water cut surges and improving overall well performance. Additionally, the incorporation of fracture parameters makes the model suitable for reservoirs with fractures.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Improved long short-term memory network based short term load forecasting
    Cui, Jie
    Gao, Qiang
    Li, Dahua
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4428 - 4433
  • [2] Fault early warning of electric submersible pump based on long short-term memory neural network
    Liu G.
    Jiang X.
    Du Y.
    Guo L.
    Wang S.
    Yan Z.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2022, 46 (05): : 170 - 176
  • [3] Early Warning Method Of Tariff Recovery Risk Based On Long Short-Term Memory Neural Network
    Zhang, Yidi
    2019 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), 2019, : 433 - 436
  • [4] Prediction of PGA in earthquake early warning using a long short-term memory neural network
    Wang, Ao
    Li, Shanyou
    Lu, Jianqi
    Zhang, Haifeng
    Wang, Borui
    Xie, Zhinan
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 234 (01) : 12 - 24
  • [5] Microgrid Load Forecasting Based on Improved Long Short-Term Memory Network
    Huang, Qiyue
    Zheng, Yuqing
    Xu, Yuxuan
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2022, 2022
  • [6] Short-term wind speed forecasting based on long short-term memory and improved BP neural network
    Chen, Gonggui
    Tang, Bangrui
    Zeng, Xianjun
    Zhou, Ping
    Kang, Peng
    Long, Hongyu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 134
  • [7] Teaching Early Warning Approach for Teachers based on Cognitive Diagnosis and Long Short-term Memory
    Ma, Hua
    Huang, Peiji
    Luo, Xi
    Huang, Qiong
    Fu, Xiangru
    Tang, Wensheng
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 3030 - 3035
  • [8] Short-Term Photovoltaic Power Forecast Based on Long Short-Term Memory Network
    Shi, Min
    Xu, Ke
    Wang, Jue
    Yin, Rui
    Wang, Tieqiang
    Yong, Taiyou
    Hongyuan, Tianjin
    PROCEEDINGS OF 2019 IEEE 3RD INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC), 2019, : 2110 - 2116
  • [9] Early Warning of Internal Leakage in Heat Exchanger Network Based on Dynamic Mechanism Model and Long Short-Term Memory Method
    Tian, Wende
    Liu, Nan
    Sui, Dongwu
    Cui, Zhe
    Liu, Zijian
    Wang, Ji
    Zou, Hao
    Zhao, Ya
    PROCESSES, 2021, 9 (02) : 1 - 20
  • [10] Early warning of tunnel collapse based on Adam-optimised long short-term memory network and TBM operation parameters
    Hou, Shaokang
    Liu, Yaoru
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 112