Enhancing mechanical properties of FDM 3D-printed parts with ultrafast laser postprocessing

被引:0
|
作者
Yadav, Darshan [1 ]
Mingareev, Ilya [1 ]
机构
[1] Florida Inst Technol, Coll Engn & Sci, Melbourne, FL 32901 USA
关键词
ultrafast laser processing; additive manufacturing; fatigue life improvement; PLA COLOR; 3D;
D O I
10.2351/7.0001659
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study investigates the use of ultrafast lasers for postprocessing fused deposition modeling 3D-printed parts, focusing on improving surface roughness and analyzing its corresponding effects on tensile strength and fatigue life. We explore the adoption of high repetition rate ultrafast laser light and raster scanning techniques to address the limitations associated with as-deposited surface roughness in 3D-printed objects. By employing a design of experiment framework using Taguchi's orthogonal arrays, we analyze the effects of various laser parameters on the surface finish and mechanical integrity of printed polylactic acid parts. Our study indicates significant enhancements: a 90% reduction in surface roughness, a 20% increase in ultimate tensile strength, and a 165% increase in high-cycle fatigue life, showcasing the considerable benefits of ultrafast laser processing. We demonstrate that low-thermal-impact surface processing can substantially elevate the quality and durability of 3D-printed materials. The analysis points to the importance of controlling certain factors during the laser postprocessing phase, as they impact surface conditions and broader material properties. This work positions ultrafast laser processing as a viable technique to bridge the gap between additive manufacturing and traditional fabrication methods, particularly in the context of improving the surface quality and structural performance of 3D-printed thermoplastics. The outcomes could significantly benefit industries where additive manufacturing is prevalent by expanding the practical applications of 3D-printed components.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Utilizing ultrafast lasers for postprocessing to improve mechanical properties of 3D-printed parts
    Yadav, Darshan
    Mingareev, Ilya
    JOURNAL OF LASER APPLICATIONS, 2023, 35 (01)
  • [2] The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts
    Cwikla, G.
    Grabowik, C.
    Kalinowski, K.
    Paprocka, I.
    Ociepka, P.
    MODTECH INTERNATIONAL CONFERENCE - MODERN TECHNOLOGIES IN INDUSTRIAL ENGINEERING V, 2017, 227
  • [3] Enhancing the mechanical properties of FDM 3D printed PETG parts with high pressure cold isostatic pressing
    Ko, Minji
    Kim, Young shin
    Jeon, Euy sik
    JOURNAL OF MANUFACTURING PROCESSES, 2025, 133 : 682 - 691
  • [4] Leveraging CO2 laser cutting for enhancing fused deposition modeling (FDM) 3D printed PETG parts through postprocessing
    Sabri, Hashem
    Mehrabi, Omid
    Khoran, Mohammad
    Moradi, Mahmoud
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2024,
  • [5] Enhancing Mechanical Properties of Polymer 3D Printed Parts
    Amza, Catalin Gheorghe
    Zapciu, Aurelian
    Constantin, George
    Baciu, Florin
    Vasile, Mihai Ion
    POLYMERS, 2021, 13 (04) : 1 - 18
  • [6] Post-Processing of FDM 3D-Printed Polylactic Acid Parts by Laser Beam Cutting
    Moradi, Mahmoud
    Moghadam, Mojtaba Karami
    Shamsborhan, Mahmoud
    Bodaghi, Mahdi
    Falavandi, Hamid
    POLYMERS, 2020, 12 (03)
  • [7] Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts
    Cantrell, Jason T.
    Rohde, Sean
    Damiani, David
    Gurnani, Rishi
    DiSandro, Luke
    Anton, Josh
    Young, Andie
    Jerez, Alex
    Steinbach, Douglas
    Kroese, Calvin
    Ifju, Peter G.
    RAPID PROTOTYPING JOURNAL, 2017, 23 (04) : 811 - 824
  • [8] The effects of processing parameters on mechanical properties of 3D-printed polyhydroxyalkanoates parts
    Ivorra-Martinez, Juan
    Peydro, Miguel Angel
    Gomez-Caturla, Jaume
    Sanchez-Nacher, Lourdes
    Boronat, Teodomiro
    Balart, Rafael
    VIRTUAL AND PHYSICAL PROTOTYPING, 2023, 18 (01)
  • [9] Mechanical Properties of 3D-Printed Parts Made of Polyethylene Terephthalate Glycol
    Sepahi, Mohammad Taregh
    Abusalma, Hisham
    Jovanovic, Vukica
    Eisazadeh, Hamid
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (09) : 6851 - 6861
  • [10] Mechanical Properties of 3D-Printed Parts Made of Polyethylene Terephthalate Glycol
    Mohammad Taregh Sepahi
    Hisham Abusalma
    Vukica Jovanovic
    Hamid Eisazadeh
    Journal of Materials Engineering and Performance, 2021, 30 : 6851 - 6861