Stationary states of a chemotaxis consumption system with singular sensitivity and inhomogeneous boundary conditions

被引:1
|
作者
Ahn, Jaewook [1 ]
Lankeit, Johannes [2 ]
机构
[1] Dongguk Univ, Dept Math, Seoul 04620, South Korea
[2] Leibniz Univ Hannover, Inst Angew Math, Welfengarten 1, D-30167 Hannover, Germany
基金
新加坡国家研究基金会;
关键词
Chemotaxis; Stationary state; Inhomogeneous Dirichlet boundary conditions; Uniqueness; Classical solvability; NAVIER-STOKES SYSTEM; PRESCRIBED SIGNAL CONCENTRATIONS; SEMILINEAR PROBLEM; GLOBAL-SOLUTIONS; MODEL; DIFFUSION;
D O I
10.1016/j.jde.2024.12.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For given total mass m > 0 we show unique solvability of the stationary chemotaxis-consumption model {0 = Delta u- chi del center dot (u/v del v) 0 = Delta v - uv integral(Omega) u = m under no-flux-Dirichlet boundary conditions in bounded smooth domains Omega subset of R-2 and Omega = B-R(0) subset of R-d, d >= 3. (c) 2024 The Authors. Published by Elsevier Inc.
引用
收藏
页码:251 / 263
页数:13
相关论文
共 50 条