Meta-prompt Engineering in ChatGPT-4 for AI-Generated BPM Reference Models

被引:0
|
作者
Piller, Christoph [1 ]
机构
[1] Berg 15a, D-85095 Denkendorf, Germany
关键词
Reference Models; Prompt Engineering; ChatGPT-4; BPM; S-BPM;
D O I
10.1007/978-3-031-72041-3_22
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper delves into the application of prompt engineering within the context of Business Process Management (BPM), focusing on the creation of a meticulously designed meta-prompt to facilitate the generation of process reference models via ChatGPT-4, a leading-edge Large Language Model (LLM). By exploring the methodology and efficacy of our approach, we demonstrate the significant potential of utilizing AI to streamline and optimize BPM. Our research highlights the critical role of precise prompt engineering in achieving accurate, relevant, and cost-effective process models, paving the way for broader application and integration with BPM tools for enhanced functionality. This study not only advances the understanding of AI's capacity to revolutionize BPM but also sets the stage for future explorations into the adaptability and scalability of AI-driven process modeling across various industries.
引用
收藏
页码:315 / 331
页数:17
相关论文
共 19 条
  • [1] Inclusive AI for radiology: Optimising ChatGPT-4 with advanced prompt engineering
    Yasmeen, Juhi
    Qamar, Md. Tauseef
    Yasmeen, Subuhi
    CLINICAL IMAGING, 2025, 118
  • [2] ChatGPT, AI-generated content, and engineering management
    Zuge Yu
    Yeming Gong
    Frontiers of Engineering Management, 2024, 11 : 159 - 166
  • [3] ChatGPT, AI-generated content, and engineering management
    Yu, Zuge
    Gong, Yeming
    FRONTIERS OF ENGINEERING MANAGEMENT, 2024, 11 (01) : 159 - 166
  • [4] Assessing the appropriateness and completeness of ChatGPT-4's AI-generated responses for queries related to diabetic retinopathy
    Subramanian, Brughanya
    Rajalakshmi, Ramachandran
    Sivaprasad, Sobha
    Rao, Chetan
    Raman, Rajiv
    INDIAN JOURNAL OF OPHTHALMOLOGY, 2024, 72 (SUPPL 4) : S684 - S687
  • [5] Enhancing Historical Extended Reality Experiences: Prompt Engineering Strategies for AI-Generated Dialogue
    Kouzelis, Lazaros Rafail
    Spantidi, Ourania
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [6] Improving readability in AI-generated medical information on fragility fractures: the role of prompt wording on ChatGPT's responses
    Akkan, Hakan
    Seyyar, Gulce Kallem
    OSTEOPOROSIS INTERNATIONAL, 2025, 36 (03) : 403 - 410
  • [7] Prompirit: Automatic Prompt Engineering Assistance for Improving AI-Generated Art Reflecting User Emotion
    Kim, Hannah
    Lee, Hyun
    Pang, Sunyu
    Oh, Uran
    2024 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE, IRI 2024, 2024, : 138 - 143
  • [8] Evaluating AI-Generated informed consent documents in oral surgery: A comparative study of ChatGPT-4, Bard gemini advanced, and human-written consents
    Vaira, Luigi Angelo
    Lechien, Jerome R.
    Maniaci, Antonino
    Tanda, Giuseppe
    Abbate, Vincenzo
    Allevi, Fabiana
    Arena, Antonio
    Beltramini, Giada Anna
    Bergonzani, Michela
    Bolzoni, Alessandro Remigio
    Crimi, Salvatore
    Frosolini, Andrea
    Gabriele, Guido
    Maglitto, Fabio
    Mayo-Yanez, Miguel
    Orru, Ludovica
    Petrocelli, Marzia
    Pucci, Resi
    Saibene, Alberto Maria
    Troise, Stefania
    Tel, Alessandro
    Vellone, Valentino
    Chiesa-Estomba, Carlos Miguel
    Boscolo-Rizzo, Paolo
    Salzano, Giovanni
    De Riu, Giacomo
    JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, 2025, 53 (01) : 18 - 23
  • [9] Encouragement vs. liability: How prompt engineering influences ChatGPT-4's radiology exam performance
    Nguyen, Daniel
    MacKenzie, Allison
    Kim, Young H.
    CLINICAL IMAGING, 2024, 115
  • [10] Optimizing ChatGPT-4's radiology performance with scale-invariant feature transform and advanced prompt engineering
    Alam, Sultan
    Rahman, Abdul
    Sohail, Shahab Saquib
    CLINICAL IMAGING, 2025, 118