Selective Laser Sintering 3D Printing of Carvedilol Tablets: Enhancing Dissolution Through Amorphization

被引:0
|
作者
Pesic, Nikola [1 ]
Ivkovic, Branka [2 ]
Barudzija, Tanja [3 ]
Grujic, Branka [4 ]
Ibric, Svetlana [1 ]
Medarevic, Djordje [1 ]
机构
[1] Univ Belgrade, Fac Pharm, Dept Pharmaceut Technol & Cosmetol, Vojvode Stepe 450, Belgrade 11221, Serbia
[2] Univ Belgrade, Fac Pharm, Dept Pharmaceut Chem, Vojvode Stepe 450, Belgrade 11221, Serbia
[3] Univ Belgrade, Vinca Inst Nucl Sci, Natl Inst Republ Serbia, Mike Petrovica Alasa 12-14, Belgrade 11351, Serbia
[4] Galenika ad, Belgrade 11080, Serbia
关键词
3D printing; selective laser sintering; poorly soluble drugs; amorphous state; dissolution improvement; DRUG-DELIVERY; OPTIMIZATION; FORMULATION;
D O I
10.3390/pharmaceutics17010006
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background/Objectives: Selective laser sintering (SLS) is one of the most promising 3D printing techniques for pharmaceutical applications as it offers numerous advantages, such as suitability to work with already approved pharmaceutical excipients, the elimination of solvents, and the ability to produce fast-dissolving, porous dosage forms with high drug loading. When the powder mixture is exposed to elevated temperatures during SLS printing, the active ingredients can be converted from the crystalline to the amorphous state, which can be used as a strategy to improve the dissolution rate and bioavailability of poorly soluble drugs. This study investigates the potential application of SLS 3D printing for the fabrication of tablets containing the poorly soluble drug carvedilol with the aim of improving the dissolution rate of the drug by forming an amorphous form through the printing process. Methods: Using SLS 3D printing, eight tablet formulations were produced using two different powder mixtures and four combinations of experimental conditions, followed by physicochemical characterization and dissolution testing. Results: Physicochemical characterization revealed that at least partial amorphization of carvedilol occurred during the printing process. Although variations in process parameters were minimal, higher temperatures in combination with lower laser speeds appeared to facilitate a greater degree of amorphization. Ultimately, the partial conversion to the amorphous form significantly improved the dissolution of carvedilol compared to its pure crystalline form. Conclusions: Obtained results suggest that the SLS 3D printing technique can be effectively used to convert poorly water-soluble drugs to their amorphous state, thereby improving solubility and bioavailability.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] 3D Printing of Personalised Carvedilol Tablets Using Selective Laser Sintering
    Tabriz, Atabak Ghanizadeh
    Gonot-Munck, Quentin
    Baudoux, Arnaud
    Garg, Vivek
    Farnish, Richard
    Katsamenis, Orestis L.
    Hui, Ho-Wah
    Boersen, Nathan
    Roberts, Sandra
    Jones, John
    Douroumis, Dennis
    PHARMACEUTICS, 2023, 15 (09)
  • [2] Selective laser sintering (SLS) 3D printing of medicines
    Fina, Fabrizio
    Goyanes, Alvaro
    Gaisford, Simon
    Basit, Abdul W.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2017, 529 (1-2) : 285 - 293
  • [3] Selective laser sintering for printing bilayer tablets
    Junqueira, Laura Andrade
    Tabriz, Atabak Ghanizadeh
    Garg, Vivek
    Kolipaka, Siva Satyanarayana
    Hui, Ho-Wah
    Boersen, Nathan
    Roberts, Sandra
    Jones, John
    Douroumis, Dennis
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2025, 670
  • [4] Investigating the Use of Magnetic Nanoparticles As Alternative Sintering Agents in Selective Laser Sintering (SLS) 3D Printing of Oral Tablets
    Zhang, Yu
    Thakkar, Rishi
    Zhang, JiaXiang
    Lu, AnQi
    Duggal, Ishaan
    Pillai, Amit
    Wang, JiaWei
    Aghda, Niloofar Heshmati
    Maniruzzaman, Mohammed
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 9 (06) : 2924 - 2936
  • [5] 3D printing: Principles and pharmaceutical applications of selective laser sintering
    Awad, Atheer
    Fina, Fabrizio
    Goyanes, Alvaro
    Gaisford, Simon
    Basit, Abdul W.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2020, 586
  • [6] Selective laser sintering 3D printing - an overview of the technology and pharmaceutical applications
    Charoo, Naseem A.
    Ali, Sogra F. Barakh
    Mohamed, Eman M.
    Kuttolamadom, Mathew A.
    Ozkan, Tanil
    Khan, Mansoor A.
    Rahman, Ziyaur
    DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2020, 46 (06) : 869 - 877
  • [7] Covalent adaptable networks of polydimethylsiloxane elastomer for selective laser sintering 3D printing
    Sun, Shaojie
    Fei, Guoxia
    Wang, Xiaorong
    Xie, Miao
    Guo, Quanfen
    Fu, Daihua
    Wang, Zhanhua
    Wang, He
    Luo, Gaoxing
    Xia, Hesheng
    CHEMICAL ENGINEERING JOURNAL, 2021, 412
  • [8] Selective Laser Sintering 3D Printing of Orally Disintegrating Printlets Containing Ondansetron
    Allahham, Nour
    Fina, Fabrizio
    Marcuta, Carmen
    Kraschew, Lilia
    Mohr, Wolfgang
    Gaisford, Simon
    Basit, Abdul W.
    Goyanes, Alvaro
    PHARMACEUTICS, 2020, 12 (02)
  • [9] Fabrication of Porous Hydrogenation Catalysts by a Selective Laser Sintering 3D Printing Technique
    Lahtinen, Elmeri
    Turunen, Lotta
    Hanninen, Mikko M.
    Kolari, Kalle
    Tuononen, Heikki M.
    Haukka, Matti
    ACS OMEGA, 2019, 4 (07): : 12012 - 12017
  • [10] APPLICATION OF SELECTIVE SEPARATION SINTERING IN CERAMICS 3D PRINTING
    Zhang, J.
    Khoshnevis, B.
    ADVANCED PROCESSING AND MANUFACTURING TECHNOLOGIES FOR NANOSTRUCTURED AND MULTIFUNCTIONAL MATERIALS II, 2016, : 151 - 157