Evaluating diabetes dataset for knowledge graph embedding based link prediction

被引:0
|
作者
Singh, Sushmita [1 ]
Siwach, Manvi [1 ]
机构
[1] JC Bose Univ Sci & Technol, Dept Comp Engn, Faridabad, India
关键词
Link prediction; Knowledge graphs; Knowledge graph embeddings; Knowledge graph completion; Translational embeddings; Diabetes;
D O I
10.1016/j.datak.2025.102414
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For doing any accurate analysis or prediction on data, a complete and well-populated dataset is required. Medical based data for any disease like diabetes is highly coupled and heterogeneous in nature, with numerous interconnections. This inherently complex data cannot be analysed by simple relational databases making knowledge graphs an ideal tool for its representation which can efficiently handle intricate relationships. Thus, knowledge graphs can be leveraged to analyse diabetes data, enhancing both the accuracy and efficiency of data-driven decision-making processes. Although substantial data exists on diabetes in various formats, the availability of organized and complete datasets is limited, highlighting the critical need for creation of a well- populated knowledge graph. Moreover while developing the knowledge graph, an inevitable problem of incompleteness is present due to missing links or relationships, necessitating the use of knowledge graph completion tasks to fill in this absent information which involves predicting missing data with various Link Prediction (LP) techniques. Among various link prediction methods, approaches based on knowledge graph embeddings have demonstrated superior performance and effectiveness. These knowledge graphs can support in-depth analysis and enhance the prediction of diabetes-associated risks in this field. This paper introduces a dataset specifically designed for performing link prediction on a diabetes knowledge graph, so that it can be used to fill the information gaps further contributing in the domain of risk analysis in diabetes. The accuracy of the dataset is assessed through validation with state-of-the-art embedding-based link prediction methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Embedding based Link Prediction for Knowledge Graph Completion
    Biswas, Russa
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 3221 - 3224
  • [2] Structural context-based knowledge graph embedding for link prediction
    Zhang, Qianjin
    Wang, Ronggui
    Yang, Juan
    Xue, Lixia
    NEUROCOMPUTING, 2022, 470 : 109 - 120
  • [3] Knowledge Graph Embedding for Link Prediction: A Comparative Analysis
    Rossi, Andrea
    Barbosa, Denilson
    Firmani, Donatella
    Matinata, Antonio
    Merialdo, Paolo
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (02)
  • [4] A Hierarchical Knowledge Graph Embedding Framework for Link Prediction
    Liu, Shuang
    Hou, Chengwang
    Meng, Jiana
    Chen, Peng
    Kolmanic, Simon
    IEEE ACCESS, 2024, 12 : 173338 - 173350
  • [5] Scaling Knowledge Graph Embedding Models for Link Prediction
    Sheikh, Nasrullah
    Qin, Xiao
    Reinwald, Berthold
    Lei, Chuan
    PROCEEDINGS OF THE 2022 2ND EUROPEAN WORKSHOP ON MACHINE LEARNING AND SYSTEMS (EUROMLSYS '22), 2022, : 87 - 94
  • [6] Open Knowledge Graph Link Prediction with Segmented Embedding
    Xie, Tingyu
    Peng, Peng
    Wang, Hongwei
    Liu, Yusheng
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [7] Knowledge Graph Embedding for Link Prediction and Triplet Classification
    Shijia, E.
    Jia, Shengbin
    Xiang, Yang
    Ji, Zilian
    KNOWLEDGE GRAPH AND SEMANTIC COMPUTING: SEMANTIC, KNOWLEDGE, AND LINKED BIG DATA, 2016, 650 : 228 - 232
  • [8] Discriminative Path-Based Knowledge Graph Embedding for Precise Link Prediction
    Zhang, Maoyuan
    Wang, Qi
    Xu, Wukui
    Li, Wei
    Sun, Shuyuan
    ADVANCES IN INFORMATION RETRIEVAL (ECIR 2018), 2018, 10772 : 276 - 288
  • [9] Link Prediction Based on Data Augmentation and Metric Learning Knowledge Graph Embedding
    Duan, Lijuan
    Han, Shengwen
    Jiang, Wei
    He, Meng
    Qiao, Yuanhua
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [10] HGCGE: hyperbolic graph convolutional networks-based knowledge graph embedding for link prediction
    Bao, Liming
    Wang, Yan
    Song, Xiaoyu
    Sun, Tao
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, : 661 - 687