A Perturbative Approach to the Solution of the Thirring Quantum Cellular Automaton

被引:0
|
作者
Bisio, Alessandro [1 ,2 ]
Perinotti, Paolo [1 ,2 ]
Pizzamiglio, Andrea [1 ,2 ]
Rota, Saverio [1 ]
机构
[1] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy
[2] Ist Nazl Fis Nucleare Sez Pavia, Via Agostino Bassi 6, I-27100 Pavia, Italy
关键词
quantum cellular automata; Thirring quantum cellular automaton; path sum solution; perturbative approach; DIRAC; FIELD;
D O I
10.3390/e27020198
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Thirring Quantum Cellular Automaton (QCA) describes the discrete time dynamics of local fermionic modes that evolve according to one step of the Dirac cellular automaton, followed by the most general on-site number-preserving interaction, and serves as the QCA counterpart of the Thirring model in quantum field theory. In this work, we develop perturbative techniques for the QCA path sum approach, expanding both the number of interaction vertices and the mass parameter of the Thirring QCA. By classifying paths within the regimes of very light and very heavy particles, we computed the transition amplitudes in the two- and three-particle sectors to the first few orders. Our investigation into the properties of the Thirring QCA, addressing the combinatorial complexity of the problem, yielded some useful results applicable to the many-particle sector of any on-site number-preserving interactions in one spatial dimension.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Thirring quantum cellular automaton
    Bisio, Alessandro
    D'Ariano, Giacomo Mauro
    Perinotti, Paolo
    Tosini, Alessandro
    PHYSICAL REVIEW A, 2018, 97 (03)
  • [2] Quantum cellular automaton for universal quantum computation
    Raussendorf, R
    PHYSICAL REVIEW A, 2005, 72 (02)
  • [3] When is a quantum cellular automaton (QCA) a quantum lattice gas automaton (QLGA)?
    Shakeel, Asif
    Love, Peter J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (09)
  • [4] Parity problem with a cellular automaton solution
    Lee, KM
    Xu, H
    Chau, HF
    PHYSICAL REVIEW E, 2001, 64 (02): : 4 - 267024
  • [5] Exact solution of a cellular automaton for traffic
    Evans, MR
    Rajewsky, N
    Speer, ER
    JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (1-2) : 45 - 96
  • [6] Exact Solution of a Cellular Automaton for Traffic
    M. R. Evans
    N. Rajewsky
    E. R. Speer
    Journal of Statistical Physics, 1999, 95 : 45 - 96
  • [7] Cellular automaton labyrinths and solution finding
    Adamatzky, A
    COMPUTERS & GRAPHICS, 1997, 21 (04) : 519 - 522
  • [8] Statistical properties of a quantum cellular automaton
    Inui, N
    Inokuchi, S
    Mizoguchi, Y
    Konno, N
    PHYSICAL REVIEW A, 2005, 72 (03):
  • [9] A Physically Universal Quantum Cellular Automaton
    Schaeffer, Luke
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2015, 2015, 9099 : 46 - 58
  • [10] Quantum cellular automaton as a Markov process
    Department of Physics, Bradley University, Peoria, IL 61625, United States
    不详
    不详
    Chaos Solitons Fractals, 8 (1375-1386):