Asymptotic confidence interval for R2 in multiple linear regression

被引:0
|
作者
Dedecker, J. [1 ]
Guedj, O. [2 ]
Taupin, M. L. [2 ]
机构
[1] Univ Paris Cite, Lab MAP5, UMR CNRS 8145, Paris, France
[2] Univ Paris Saclay, Univ Evry Val Essonne, Labe LaMME, UMR CNRS 8071, Gif Sur Yvette, France
关键词
Multiple correlation coefficient; asymptotic distribution; robustness; heteroscedasticity; screening; CENTRAL-LIMIT-THEOREM; CORRELATION-COEFFICIENT; SAMPLING DISTRIBUTION; HETEROSKEDASTICITY; MODELS;
D O I
10.1080/02331888.2024.2428978
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Following White's approach of robust multiple linear regression [White H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 1980;48(4):817-838], we give asymptotic confidence intervals for the multiple correlation coefficient $ R<^>2 $ R2 under minimal moment conditions. We also give the asymptotic joint distribution of the empirical estimators of the individual $ R<^>2 $ R2's. Through different sets of simulations, we show that the procedure is indeed robust (contrary to the procedure involving the near exact distribution of the empirical estimator of $ R<^>2 $ R2 is the multivariate Gaussian case) and can be also applied to count linear regression. Several extensions are also discussed, as well as an application to robust screening.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条