Deep Learning-Based Intrusion Detection System for Detecting IoT Botnet Attacks: A Review

被引:0
|
作者
Al-Shurbaji, Tamara [1 ]
Anbar, Mohammed [1 ]
Manickam, Selvakumar [1 ]
Hasbullah, Iznan H. [1 ]
Alfriehat, Nadia [1 ]
Alabsi, Basim Ahmad [2 ]
Alzighaibi, Ahmad Reda [3 ]
Hashim, Hasan [3 ]
机构
[1] Univ Sains Malaysia, Natl Adv IPv6 Ctr NAv6, Minden Hts 11800, Penang, Malaysia
[2] Najran Univ, Appl Coll, Najran 61441, Saudi Arabia
[3] Taibah Univ, Coll Comp Sci & Engn, Dept Informat Syst, Madinah 42353, Saudi Arabia
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Internet of Things; Botnet; Reviews; Wireless sensor networks; Security; Service-oriented architecture; Sensors; Medical services; Manufacturing; Radiofrequency identification; Intrusion detection system (IDS); botnet; deep learning; Internet of Things (IoT); IoT Botnet; neural networks; NEURAL-NETWORK; INTERNET; THINGS; SECURITY; CHALLENGES;
D O I
10.1109/ACCESS.2025.3526711
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The proliferation of Internet of Things (IoT) devices has brought about an increased threat of botnet attacks, necessitating robust security measures. In response to this evolving landscape, deep learning (DL)-based intrusion detection systems (IDS) have emerged as a promising approach for detecting and mitigating botnet activities in IoT environments. Therefore, this paper thoroughly reviews existing literature on botnet detection in the IoT using DL-based IDS. It consolidates and analyzes a wide range of research papers, highlighting key findings, methodologies, advancements, shortcomings, and challenges in the field. Additionally, we performed a qualitative comparison with existing surveys using author-defined metrics to underscore the uniqueness of this survey. We also discuss challenges, limitations, and future research directions, emphasizing the distinctive contributions of our review. Ultimately, this survey serves as a guideline for future researchers, contributing to the advancement of botnet detection methods in IoT environments and enhancing security against botnet threats.
引用
收藏
页码:11792 / 11822
页数:31
相关论文
共 50 条
  • [1] Intrusion Detection System for IOT Botnet Attacks Using Deep Learning
    Jithu P.
    Shareena J.
    Ramdas A.
    Haripriya A.P.
    SN Computer Science, 2021, 2 (3)
  • [2] A hybrid deep learning-based intrusion detection system for IoT networks
    Khan, Noor Wali
    Alshehri, Mohammed S.
    Khan, Muazzam A.
    Almakdi, Sultan
    Moradpoor, Naghmeh
    Alazeb, Abdulwahab
    Ullah, Safi
    Naz, Naila
    Ahmad, Jawad
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 13491 - 13520
  • [3] A Novel Deep Learning-Based Intrusion Detection System for IoT Networks
    Awajan, Albara
    COMPUTERS, 2023, 12 (02)
  • [4] A Deep Learning-Based Intrusion Detection System for MQTT Enabled IoT
    Khan, Muhammad Almas
    Khan, Muazzam A.
    Jan, Sana Ullah
    Ahmad, Jawad
    Jamal, Sajjad Shaukat
    Shah, Awais Aziz
    Pitropakis, Nikolaos
    Buchanan, William J.
    SENSORS, 2021, 21 (21)
  • [5] A Deep Learning-Based Intrusion Detection and Preventation System for Detecting and Preventing Denial-of-Service Attacks
    Canola Garcia, Juan Fernando
    Taborda Blandon, Gabriel Enrique
    IEEE ACCESS, 2022, 10 : 83043 - 83060
  • [6] Deep Learning-based Intrusion Detection for IoT Networks
    Ge, Mengmeng
    Fu, Xiping
    Syed, Naeem
    Baig, Zubair
    Teo, Gideon
    Robles-Kelly, Antonio
    2019 IEEE 24TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC 2019), 2019, : 256 - 265
  • [7] Preventing Adversarial Attacks Against Deep Learning-Based Intrusion Detection System
    Nguyen, Xuan-Ha
    Nguyen, Xuan-Duong
    Le, Kim-Hung
    INFORMATION SECURITY PRACTICE AND EXPERIENCE, ISPEC 2022, 2022, 13620 : 382 - 396
  • [8] A novel deep learning-based intrusion detection system for IoT DDoS security
    Hizal, Selman
    Cavusoglu, Unal
    Akgun, Devrim
    INTERNET OF THINGS, 2024, 28
  • [9] Hybrid Deep Learning-Based Intrusion Detection System for RPL IoT Networks
    Al Sawafi, Yahya
    Touzene, Abderezak
    Hedjam, Rachid
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2023, 12 (02)
  • [10] A novel deep learning-based approach for detecting attacks in social IoT
    Das, R. Mohan
    Kumar, U. Arun
    Gopinath, S.
    Gomathy, V.
    Natraj, N. A.
    Anushkannan, N. K.
    Balashanmugham, Adhavan
    SOFT COMPUTING, 2023,