Toward Accelerated Nuclear-physics Parameter Estimation from Binary Neutron Star Mergers: Emulators for the Tolman-Oppenheimer-Volkoff Equations

被引:2
|
作者
Reed, Brendan T. [1 ]
Somasundaram, Rahul [1 ,2 ]
De, Soumi [1 ]
Armstrong, Cassandra L. [3 ]
Giuliani, Pablo [4 ]
Capano, Collin [2 ,5 ]
Brown, Duncan A. [2 ]
Tews, Ingo [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[2] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[3] Los Alamos Natl Lab, Intelligence & Space Res Div, Los Alamos, NM 87545 USA
[4] Michigan State Univ, Facil Rare Isotope Beams, E Lansing, MI 48824 USA
[5] Univ Massachusetts Dartmouth, Phys Dept, N Dartmouth, MA 02747 USA
来源
ASTROPHYSICAL JOURNAL | 2024年 / 974卷 / 02期
基金
美国国家科学基金会;
关键词
REDUCED BASIS METHOD; OF-STATE; GRAVITATIONAL-WAVE; NONPARAMETRIC-INFERENCE; BAYESIAN-INFERENCE; CONSTRAINTS; MATTER; MASS;
D O I
10.3847/1538-4357/ad737c
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Gravitational-wave observations of binary neutron-star (BNS) mergers have the potential to revolutionize our understanding of the nuclear equation of state (EOS) and the fundamental interactions that determine its properties. However, Bayesian parameter estimation frameworks do not typically sample over microscopic nuclear-physics parameters that determine the EOS. One of the major hurdles in doing so is the computational cost involved in solving the neutron-star structure equations, known as the Tolman-Oppenheimer-Volkoff (TOV) equations. In this paper, we explore approaches to emulating solutions for the TOV equations: multilayer perceptrons (MLPs), Gaussian processes, and a data-driven variant of the reduced basis method (RBM). We implement these emulators for three different parameterizations of the nuclear EOS, each with a different degree of complexity represented by the number of model parameters. We find that our MLP-based emulators are generally more accurate than the other two algorithms, whereas the RBM results in the largest speedup with respect to the full high-fidelity TOV solver. We employ these emulators for a simple parameter inference using a potentially loud BNS observation and show that the posteriors predicted by our emulators are in excellent agreement with those obtained from the full TOV solver.
引用
收藏
页数:12
相关论文
共 6 条
  • [1] Novel scalings of neutron star properties from analyzing dimensionless Tolman-Oppenheimer-Volkoff equations
    Cai, Bao-Jun
    Li, Bao-An
    EUROPEAN PHYSICAL JOURNAL A, 2025, 61 (03):
  • [2] Central speed of sound, the trace anomaly, and observables of neutron stars from a perturbative analysis of scaled Tolman-Oppenheimer-Volkoff equations
    Cai, Bao-Jun
    Li, Bao-An
    Zhang, Zhen
    PHYSICAL REVIEW D, 2023, 108 (10)
  • [3] Nuclear physics constraints from binary neutron star mergers
    Iacovelli, Francesco
    Mancarella, Michele
    Mondal, Chiranjib
    Puecher, Anna
    Dietrich, Tim
    Gulminelli, Francesca
    Maggiore, Michele
    Oertel, Micaela
    PHYSICAL REVIEW D, 2023, 108 (12)
  • [4] An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers
    Peter T. H. Pang
    Tim Dietrich
    Michael W. Coughlin
    Mattia Bulla
    Ingo Tews
    Mouza Almualla
    Tyler Barna
    Ramodgwendé Weizmann Kiendrebeogo
    Nina Kunert
    Gargi Mansingh
    Brandon Reed
    Niharika Sravan
    Andrew Toivonen
    Sarah Antier
    Robert O. VandenBerg
    Jack Heinzel
    Vsevolod Nedora
    Pouyan Salehi
    Ritwik Sharma
    Rahul Somasundaram
    Chris Van Den Broeck
    Nature Communications, 14
  • [5] An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers
    Pang, Peter T. H.
    Dietrich, Tim
    Coughlin, Michael W.
    Bulla, Mattia
    Tews, Ingo
    Almualla, Mouza
    Barna, Tyler
    Kiendrebeogo, Ramodgwende Weizmann
    Kunert, Nina
    Mansingh, Gargi
    Reed, Brandon
    Sravan, Niharika
    Toivonen, Andrew
    Antier, Sarah
    Vandenberg, Robert O.
    Heinzel, Jack
    Nedora, Vsevolod
    Salehi, Pouyan
    Sharma, Ritwik
    Somasundaram, Rahul
    Van Den Broeck, Chris
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [6] Detection and parameter estimation of gravitational waves from binary neutron-star mergers in real LIGO data using deep learning
    Krastev, Plamen G.
    Gill, Kiranjyot
    Villar, V. Ashley
    Berger, Edo
    PHYSICS LETTERS B, 2021, 815