Porous sorbents for direct capture of carbon dioxide from ambient air

被引:3
|
作者
Zhang, Yuchen [1 ,2 ]
Ding, Lifeng [3 ]
Xie, Zhenghe [3 ]
Zhang, Xin [1 ,2 ]
Sui, Xiaofeng [3 ]
Li, Jian-Rong [1 ,2 ]
机构
[1] Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Coll Mat Sci & Engn, Dept Chem Engn, Beijing 100124, Peoples R China
[3] Beijing Energy Holding Co Ltd, Beijing 100022, Peoples R China
关键词
Direct air capture; Carbon neutrality; Porous materials; Physisorption; Chemisorption; METAL-ORGANIC FRAMEWORK; DIRECT CO2 CAPTURE; MESOPOROUS SILICA; ADSORPTION CAPACITY; HYDROGEN-PRODUCTION; HIGHLY EFFICIENT; AMINE; WATER; MOF; POLYETHYLENEIMINE;
D O I
10.1016/j.cclet.2024.109676
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Large-scale deployment of carbon dioxide (CO2 ) removal technology is an essential step to cope with global warming and achieve carbon neutrality. Direct air capture (DAC) has recently received increasing attention given the high flexibility to remove CO2 from discrete sources. Porous materials with adjustable pore characteristics are promising sorbents with low or no latent heat of vaporization. This review article has summarized the recent development of porous sorbents for DAC, with a focus of pore engineering strategy and adsorption mechanism. Physisorbents such as zeolites, porous carbons, metal-organic frameworks (MOFs), and amine-modified chemisorbents have been discussed and their challenges in practical application have been analyzed. At last, future directions have been proposed, and it is expected to inspire collaborations from chemistry, environment, material science and engineering communities. (c) 2025 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Porous sorbents for direct capture of carbon dioxide from ambient air
    Yuchen Zhang
    Lifeng Ding
    Zhenghe Xie
    Xin Zhang
    Xiaofeng Sui
    JianRong Li
    Chinese Chemical Letters, 2025, 36 (03) : 153 - 161
  • [2] Review of moisture swing sorbents for carbon dioxide capture from ambient air
    Wang, Weishu
    Zhang, Xiangxin
    Liu, Jun
    Liang, Chenyang
    Niu, Jingzun
    Wang, Feiyue
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2024, 32 (02) : 119 - 147
  • [3] Capture of carbon dioxide from ambient air
    Lackner, K. S.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 176 : 93 - 106
  • [4] Capture of carbon dioxide from ambient air
    K.S. Lackner
    The European Physical Journal Special Topics, 2009, 176 : 93 - 106
  • [5] Direct capture of carbon dioxide from air via lime-based sorbents
    Samari, Mohammad
    Ridha, Firas
    Manovic, Vasilije
    Macchi, Arturo
    Anthony, E. J.
    MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE, 2020, 25 (01) : 25 - 41
  • [6] Direct capture of carbon dioxide from air via lime-based sorbents
    Mohammad Samari
    Firas Ridha
    Vasilije Manovic
    Arturo Macchi
    E. J. Anthony
    Mitigation and Adaptation Strategies for Global Change, 2020, 25 : 25 - 41
  • [7] Sorbents for the Direct Capture of CO2 from Ambient Air
    Shi, Xiaoyang
    Xiao, Hang
    Azarabadi, Habib
    Song, Juzheng
    Wu, Xiaolong
    Chen, Xi
    Lackner, Klaus S.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (18) : 6984 - 7006
  • [8] The carbon challenge: Design, synthesis, and chemisorption behavior of solid sorbents in direct air capture of carbon dioxide
    Qiu, Liqi
    Mokhtarinori, Narges
    Liu, Hongjun
    Jiang, De-en
    Yang, Zhenzhen
    Dai, Sheng
    MATERIALS TODAY ENERGY, 2025, 47
  • [9] Moisture Swing Sorbent for Carbon Dioxide Capture from Ambient Air
    Wang, Tao
    Lackner, Klaus S.
    Wright, Allen
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (15) : 6670 - 6675
  • [10] Progress on direct air capture of carbon dioxide
    Song, Kechen
    Cui, Xili
    Xing, Huabin
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (03): : 1152 - 1162