Independent Embedding-Based Relational Enhancement Model for Hyper-Relational Knowledge Graph

被引:0
|
作者
Han, Qilong [1 ]
Li, Jiahang [1 ]
Lu, Dan [1 ]
Li, Lijie [1 ]
Xie, Bingyi [2 ]
机构
[1] Harbin Engn Univ, Harbin, Peoples R China
[2] Georgia State Univ, Atlanta, GA 30303 USA
基金
中国国家自然科学基金;
关键词
Knowledge Graph Embedding; Hyper-relational Knowledge Graph; Contrastive Learning; Link Prediction;
D O I
10.1007/978-981-97-5562-2_33
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The qualifiers (key-value pairs) in the hyper-relational knowledge graphs (HKGs) help the model accurately identify the target. The primary challenge of HKG is how to efficiently obtain the independent features of entities and relations from qualifiers, which can be utilized to address the issue of their potential confusion with the main triples. However, most current models for HKG utilize identical embedding matrices to represent entities within both main triples and qualifiers, making it hard to capture the precise influence of various qualifiers on relations. To address these issues, we propose an improved model IRE for HKG representation. IRE independently learns the embeddings of qualifiers, which promotes exploring interactions and features between qualifiers and main triples. Then, IRE leverages these features to enhance the semantic richness of relations. We incorporate contrastive learning to distinguish entities and relations with unique semantics further, enhancing the model's learning capabilities. IRE can be applied to various downstream tasks, and we conducted experiments using the link prediction task. Experimental evaluations of multiple datasets demonstrate that the IRE consistently outperforms several state-of-the-art baselines.
引用
收藏
页码:496 / 506
页数:11
相关论文
共 50 条
  • [1] Knowledge Graph Embedding for Hyper-Relational Data
    Zhang, Chunhong
    Zhou, Miao
    Han, Xiao
    Hu, Zheng
    Ji, Yang
    TSINGHUA SCIENCE AND TECHNOLOGY, 2017, 22 (02) : 185 - 197
  • [2] Knowledge Graph Embedding for Hyper-Relational Data
    Chunhong Zhang
    Miao Zhou
    Xiao Han
    Zheng Hu
    Yang Ji
    Tsinghua Science and Technology, 2017, 22 (02) : 185 - 197
  • [3] Knowledge Graph Embedding for Hyper-Relational Data
    Chunhong Zhang
    Miao Zhou
    Xiao Han
    Zheng Hu
    Yang Ji
    Tsinghua Science and Technology, 2017, (02) : 185 - 197
  • [4] Beyond Triplets: Hyper-Relational Knowledge Graph Embedding for Link Prediction
    Rosso, Paolo
    Yang, Dingqi
    Cudre-Mauroux, Philippe
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 1885 - 1896
  • [5] Knowledge Graph Completion for Hyper-relational Data
    Zhou, Miao
    Zhang, Chunhong
    Han, Xiao
    Ji, Yang
    Hu, Zheng
    Qiu, Xiaofeng
    BIG DATA COMPUTING AND COMMUNICATIONS, (BIGCOM 2016), 2016, 9784 : 236 - 246
  • [6] HyperCL: A Contrastive Learning Framework for Hyper-Relational Knowledge Graph Embedding with Hierarchical Ontology
    Lu, Yuhuan
    Yu, Weijian
    Jing, Xin
    Yang, Dingqi
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 2918 - 2929
  • [7] Path-based Link Prediction on Hyper-relational Knowledge Graph
    Liu, Shuzhi
    Di, Shimin
    Peng, Jianwen
    Yao, Quanming
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 1071 - 1074
  • [8] Hyper-relational knowledge graph neural network for next POI recommendation
    Zhang, Jixiao
    Li, Yongkang
    Zou, Ruotong
    Zhang, Jingyuan
    Jiang, Renhe
    Fan, Zipei
    Song, Xuan
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2024, 27 (04):
  • [9] Multi-task Learning for Hyper-Relational Knowledge Graph Completion
    Yin, Jiaqian
    Zhou, Jie
    Shan, Yongxue
    Peng, Jie
    Liu, Haijiao
    Zhou, Xin
    Wang, Xiaodong
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14877 : 115 - 126
  • [10] DHGE: Dual-View Hyper-Relational Knowledge Graph Embedding for Link Prediction and Entity Typing
    Luo, Haoran
    E, Haihong
    Tan, Ling
    Zhou, Gengxian
    Yao, Tianyu
    Wan, Kaiyang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 5, 2023, : 6467 - 6474