PERMMA: Enhancing parameter estimation of software reliability growth models: A comparative analysis of metaheuristic optimization algorithms

被引:0
|
作者
Pradhan, Vishal [1 ]
Patra, Arijit [1 ]
Jain, Ankush [2 ]
Jain, Garima [3 ]
Kumar, Ajay [4 ]
Dhar, Joydip [4 ]
Bandyopadhyay, Anjan [5 ]
Mallik, Saurav [6 ,7 ]
Ahmad, Naim [8 ]
Badawy, Ahmed Said [8 ]
机构
[1] Kalinga Inst Ind Technol, Sch Appl Sci, Bhubaneswar, Odisha, India
[2] Netaji Subhas Univ Technol, Dept Comp Sci & Engn, New Delhi, India
[3] Noida Inst Engn & Technol, Dept Comp Sci & Business Syst, Greater Noida, India
[4] Indian Inst Informat Technol & Management Gwalior, Dept Engn Sci, ABV, Gwalior, MP, India
[5] Kalinga Inst Ind Technol, Sch Comp Sci & Engn, Bhubaneswar, Odisha, India
[6] Harvard TH Chan Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA
[7] Univ Arizona, Dept Pharmacol & Toxicol, Tucson, AZ 85721 USA
[8] King Khalid Univ, Coll Comp Sci, Abha, Saudi Arabia
来源
PLOS ONE | 2024年 / 19卷 / 09期
关键词
FAULT-DETECTION; TESTING-EFFORT; CHANGE-POINT; SYSTEMS;
D O I
10.1371/journal.pone.0304055
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Software reliability growth models (SRGMs) are universally admitted and employed for reliability assessment. The process of software reliability analysis is separated into two components. The first component is model construction, and the second is parameter estimation. This study concentrates on the second segment parameter estimation. The past few decades of literature observance say that the parameter estimation was typically done by either maximum likelihood estimation (MLE) or least squares estimation (LSE). Increasing attention has been noted in stochastic optimization methods in the previous couple of decades. There are various limitations in the traditional optimization criteria; to overcome these obstacles metaheuristic optimization algorithms are used. Therefore, it requires a method of search space and local optima avoidance. To analyze the applicability of various developed meta-heuristic algorithms in SRGMs parameter estimation. The proposed approach compares the meta-heuristic methods for parameter estimation by various criteria. For parameter estimation, this study uses four meta-heuristics algorithms: Grey-Wolf Optimizer (GWO), Regenerative Genetic Algorithm (RGA), Sine-Cosine Algorithm (SCA), and Gravitational Search Algorithm (GSA). Four popular SRGMs did the comparative analysis of the parameter estimation power of these four algorithms on three actual-failure datasets. The estimated value of parameters through meta-heuristic algorithms are approximately near the LSE method values. The results show that RGA and GWO are better on a variety of real-world failure data, and they have excellent parameter estimation potential. Based on the convergence and R2 distribution criteria, this study suggests that RGA and GWO are more appropriate for the parameter estimation of SRGMs. RGA could locate the optimal solution more correctly and faster than GWO and other optimization techniques.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] A Comparative Study on Accurate Parameter Estimation of Solar Photovoltaic Models Using Metaheuristic Optimization Algorithms
    Yesilbudak, Mehmet
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2024, 52 (07) : 1001 - 1021
  • [2] A modified whale optimization algorithm for parameter estimation of software reliability growth models
    Lu, Kezhong
    Ma, Zongmin
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2021, 15
  • [3] Parameter Estimation of Software Reliability Growth Models by A Modified Whale Optimization Algorithm
    Lu, Kezhong
    Ma, Zongmin
    2018 17TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES), 2018, : 268 - 271
  • [4] On parameter estimation of software reliability models
    Barghout, May
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (02) : 910 - 932
  • [5] Enhancing Sustainability in Renewable Energy: Comparative Analysis of Optimization Algorithms for Accurate PV Parameter Estimation
    Fathi, Hanaa
    Alsekait, Deema Mohammed
    Tawil, Arar Al
    Kamal, Israa Wahbi
    Aloun, Mohammad Sameer
    Manhrawy, Ibrahim I. M.
    SUSTAINABILITY, 2025, 17 (06)
  • [6] Using metaheuristic algorithms for parameter estimation in generalized Mallows models
    Aledo, Juan A.
    Gamez, Jose A.
    Molina, David
    APPLIED SOFT COMPUTING, 2016, 38 : 308 - 320
  • [7] A Comparative Analysis of Metaheuristic Algorithms for Enhanced Parameter Estimation on Inverted Pendulum System Dynamics
    Sanin-Villa, Daniel
    Rodriguez-Cabal, Miguel Angel
    Grisales-Norena, Luis Fernando
    Ramirez-Neria, Mario
    Tejada, Juan C.
    MATHEMATICS, 2024, 12 (11)
  • [8] A Parameter Estimation Method for Software Reliability Models
    Zheng, Changyou
    Liu, Xiaoming
    Huang, Song
    Yao, Yi
    CEIS 2011, 2011, 15
  • [9] Parameter Estimation of Software Reliability Growth Models Using Hybrid Genetic Algorithm
    Kumar, Anurag
    Tripathi, Rajan Prasad
    Saraswat, Pavi
    Gupta, Punit
    2017 FOURTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2017, : 317 - 322
  • [10] Efficient parameter estimation of software reliability growth models using harmony search
    Choudhary, Ankur
    Baghel, Anurag Singh
    Sangwan, Om Prakash
    IET SOFTWARE, 2017, 11 (06) : 286 - 291