ASYMPTOTIC STABILITY FOR MICROPOLAR FLUIDS EQUATIONS

被引:0
|
作者
Boldrini, J. O. S. E. LUIz [1 ]
Notte-cuello, Eduardo alfonso [2 ]
Ortega-torres, Elva [3 ]
Rojas-medar, Marko antonio [4 ]
机构
[1] Univ Estadual Campinas, Fac Engn Mecan, Campinas, Brazil
[2] Univ La Serena, Dept Matemat, La Serena, Chile
[3] Univ Catolica Norte, Dept Matemat, Antofagasta, Chile
[4] Univ Tarapaca, Dept Matemat, Arica, Chile
关键词
Micropolar fluids equations; Global strong solution; Stability of large solutions; Exponential stability and decay; Asymptotic stability; EXPONENTIAL STABILITY; EXISTENCE; REGULARITY; UNIQUENESS;
D O I
10.3934/dcdsb.2025004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We study the stability of large solutions of the equations for the motion of micropolar fluids in bounded three-dimensional domains. Under suitable conditions on the linear velocity, we prove that a strong local solution becomes a strong global solution, then we prove that when both initial data and the external forces are subject to small perturbations, the global solutions are stable. The exponential stability and decay are also proved under additional conditions. We emphasize that our result does not require additional information on the microrotational velocity.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Asymptotic analysis for micropolar fluids
    Dupuy, D
    Panasenko, GP
    Stavre, R
    COMPTES RENDUS MECANIQUE, 2004, 332 (01): : 31 - 36
  • [2] Asymptotic methods for micropolar fluids in a tube structure
    Dupuy, D
    Panasenko, GP
    Stavre, R
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (05): : 735 - 758
  • [3] Asymptotic behaviour of a system of micropolar equations
    Marin-Rubio, Pedro
    Poblete-Cantellano, Mariano
    Rojas-Medar, Marko
    Torres-Cerda, Francisco
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016, (15) : 1 - 18
  • [4] Asymptotic stability of planar rarefaction wave to 3D micropolar equations
    Gong, Guiqiong
    Zhang, Lan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (02)
  • [5] Constitutive equations of Micropolar electromagnetic fluids
    Chen, James
    Lee, James D.
    Liang, Chunlei
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2011, 166 (14-15) : 867 - 874
  • [6] About thin film micropolar asymptotic equations
    Bayada, G
    Chambat, M
    Gamouana, SR
    QUARTERLY OF APPLIED MATHEMATICS, 2001, 59 (03) : 413 - 439
  • [7] SOME RESULTS ON THE STABILITY PROBLEM OF MICROPOLAR FLUIDS
    PEREZGARCIA, C
    RUBI, JM
    PHYSICS LETTERS A, 1979, 74 (3-4) : 164 - 166
  • [8] STABILITY OF PLANAR CHANNEL FLOWS OF MICROPOLAR FLUIDS
    KUMMERER, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (07): : T285 - T287
  • [9] Exponential stability for magneto-micropolar fluids
    Braz e Silva, P.
    Friz, L.
    Rojas-Medar, M. A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 143 : 211 - 223
  • [10] Asymptotic behavior and internal stabilization for the micropolar fluid equations
    Braze e Silva, P.
    Loayza, M.
    Rojas-Medar, M. A.
    SYSTEMS & CONTROL LETTERS, 2023, 173