Automatic Optimization With Deep Q-learning for Digital Predistortion Model of RF Power Amplifiers

被引:0
|
作者
Zhang, Qianqian [1 ,2 ]
Jiang, Chengye [1 ,2 ]
Yang, Guichen [1 ,2 ]
Han, Renlong [1 ,2 ]
Liu, Falin [1 ,2 ]
机构
[1] Univ Sci & Technol China, Dept EEIS, Hefei 230027, Peoples R China
[2] Chinese Acad Sci, Key Lab Electromagnet Space Informat, Hefei 230027, Peoples R China
基金
中国国家自然科学基金;
关键词
Behavioral modeling; digital predistortion (DPD); deep reinforcement learning (DRL); generalized memory polynomial (GMP); structure optimization; REDUCTION;
D O I
10.1109/ICMMT61774.2024.10672084
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a method for searching the optimal structure of generalized memory polynomial (GMP), called automatic GMP (Auto GMP), that uses deep reinforcement learning (DRL) to learn the relationship between structure parameters of GMP and the set goal, in order to make a better trade-off between performance and complexity. Based on a comprehensive consideration of implementation difficulty and search efficiency, deep Q-learning (DQN) is chosen to construct the proposed model. Experiments show that it can find a set of structure parameters of GMP with the lowest complexity and optimal performance compared to the greedy algorithm and simulated annealing (SA) algorithm.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Complexity Optimized Digital Predistortion Model of RF Power Amplifiers
    Cao, Wenhui
    Wang, Siqi
    Landin, Per N.
    Fager, Christian
    Eriksson, Thomas
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (03) : 1490 - 1499
  • [2] Novel polynomial model for digital predistortion of RF power amplifiers
    Li, Bo
    Ge, Jianhua
    Ai, Bo
    Journal of Computational Information Systems, 2009, 5 (01): : 121 - 124
  • [3] Analysis of Deep Learning Models Towards High Performance Digital Predistortion for RF Power Amplifiers
    Kudupudi, Rajesh
    Pour, Fariborz Lohrabi
    Ha, Dong Sam
    Ha, Sook Shin
    Ramezanpour, Keyvan
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 1309 - 1313
  • [4] A Simulation Method for Design and Optimization of RF Power Amplifiers with Digital Predistortion
    Chauhan, Hari
    Onabajo, Marvin
    McCormick, Martin
    Kvartenko, Vlad
    Coxe, Robin
    2015 IEEE DALLAS CIRCUITS AND SYSTEMS CONFERENCE (DCAS), 2015,
  • [5] Power Adaptive Digital Predistortion for RF Power Amplifiers
    Guo, Yan
    Yu, Chao
    Zhu, Anding
    2014 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2014,
  • [6] Dynamic Extended Hammerstein Model of RF Power Amplifiers for Digital Predistortion
    Xu, Yingjie
    Wang, Jingqi
    Zhu, Xiaowei
    Zhai, Jianfeng
    2011 6TH EUROPEAN MICROWAVE INTEGRATED CIRCUIT CONFERENCE, 2011, : 276 - 279
  • [7] A generalized memory polynomial model for digital predistortion of RF power amplifiers
    Morgan, Dennis R.
    Ma, Zhengxiang
    Kim, Jaehyeong
    Zierdt, Michael G.
    Pastalan, John
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (10) : 3852 - 3860
  • [8] A Modified Bilinear Polynomial Model for Digital Predistortion of RF Power Amplifiers
    Zhao, Xia
    Li, Zhanning
    2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 91 - 95
  • [9] A Low Running Complexity Model for Digital Predistortion of RF Power Amplifiers
    Han, Renlong
    Qiao, Wen
    Jiang, Chengye
    Su, Lei
    Yang, Guichen
    Tan, Jingchao
    Liu, Falin
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2022, 32 (11) : 1371 - 1374
  • [10] Digital Predistortion of RF Power Amplifiers using DeepShift
    Watanabe, Taishi
    Ohseki, Takeo
    Amano, Yoshiaki
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,