Sensing and Reasoning of Water Quality Based on Deep Reinforcement Learning in Complex Watershed

被引:0
|
作者
Ye, Zhanhong [1 ]
Wu, Fan [1 ]
Zhang, Cong [2 ]
Cheng, Chi-Tsun [3 ]
Fan, Wenhao
Tang, Bihua [1 ]
Liu, Yuanan [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Comp Sci, Natl Pilot Software Engn Sch, Beijing 100876, Peoples R China
[3] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
来源
IEEE INTERNET OF THINGS JOURNAL | 2025年 / 12卷 / 05期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Convolutional neural network (CNN); inference; sensing; sensor deployment; spatiotemporal; water quality; POLLUTION; RIVER;
D O I
10.1109/JIOT.2024.3486771
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aquatic information monitoring is crucial for the sustainable management of water environments. Conventional interpolation methods commonly hinge on assumptions of spatial proximity or temporal similarity. However, they often fall short of capturing the intricate spatiotemporal correlations present in water quality sequences, affecting our understanding of the spatial patterns of regional water quality conditions. In this study, we propose a framework for river basin information fine-grained sensing based on deep learning, which includes a global sensing model (SGM) and a static deployment model. Inside the SGM, we adopt a multidimensional convolutional neural network (CNN) to extract spatiotemporal features and an attention mechanism to fuse these features, to infer water quality variable information on unmonitored points. Since the inference outcomes could be affected by the locations of the sensors, to minimize the inference error of the SGM, the static deployment model was designed to aid the deployment of sensors into strategic locations of a river basin to obtain optimum spatial-temporal data samples. The research results not only revealed the spatial distribution patterns of total nitrogen (TN) concentrations but also showed that the proposed method could yield a better inference performance compared to traditional interpolation methods.
引用
收藏
页码:5036 / 5049
页数:14
相关论文
共 50 条
  • [1] Hybrid deep learning based prediction for water quality of plain watershed
    Wang, Kefan
    Liu, Lei
    Ben, Xuechen
    Jin, Danjun
    Zhu, Yao
    Wang, Feier
    ENVIRONMENTAL RESEARCH, 2024, 262
  • [2] Dynamic knowledge graph reasoning based on deep reinforcement learning
    Liu, Hao
    Zhou, Shuwang
    Chen, Changfang
    Gao, Tianlei
    Xu, Jiyong
    Shu, Minglei
    KNOWLEDGE-BASED SYSTEMS, 2022, 241
  • [3] Deep Reinforcement Learning based Indoor Air Quality Sensing by Cooperative Mobile Robots
    Hu, Zhiwen
    Song, Tiankuo
    Biant, Kaigui
    Song, Lingyang
    2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2020,
  • [4] Cloud Reasoning Model-based Exploration for Deep Reinforcement Learning
    Li Chenxi
    Cao Lei
    Chen Xiliang
    Zhang Yongliang
    Xu Zhixiong
    Peng Hui
    Duan Liwen
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (01) : 244 - 248
  • [5] Knowledge Reasoning Method Based on Deep Transfer Reinforcement Learning: DTRLpath
    Lin, Shiming
    Ye, Ling
    Zhuang, Yijie
    Lu, Lingyun
    Zheng, Shaoqiu
    Huang, Chenxi
    Kwee, Ng Yin
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 299 - 317
  • [6] Modeling Complex Networks Based on Deep Reinforcement Learning
    Song, Wenbo
    Sheng, Wei
    Li, Dong
    Wu, Chong
    Ma, Jun
    FRONTIERS IN PHYSICS, 2022, 9
  • [7] Parameter estimation in quantum sensing based on deep reinforcement learning
    Tailong Xiao
    Jianping Fan
    Guihua Zeng
    npj Quantum Information, 8
  • [8] Parameter estimation in quantum sensing based on deep reinforcement learning
    Xiao, Tailong
    Fan, Jianping
    Zeng, Guihua
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [9] Dynamic Decision Making Based on Explicit Knowledge Reasoning and Deep Reinforcement Learning
    Zhang H.-D.
    Chen Z.-H.
    Chen J.-Y.
    Zhou Y.
    Lian D.-F.
    Wu K.-S.
    Lin F.-Z.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (08): : 3821 - 3835
  • [10] Deep Reinforcement Learning of Abstract Reasoning from Demonstrations
    Clark-Turner, Madison
    Begum, Momotaz
    COMPANION OF THE 2018 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI'18), 2018, : 372 - 372