A Heterogeneously Integrated 256-Element 5G Phased Array: Design, Assembly, Test

被引:1
|
作者
Sadhu, Bodhisatwa [1 ]
Paidimarri, Arun [1 ]
Watanabe, Atom O. [1 ]
Liu, Duixian [1 ]
Gu, Xiaoxiong [1 ]
Baks, Christian W. [1 ]
Tojo, Yujiro [2 ]
Fujisaku, Yoshiharu [2 ]
de Sousa, Isabel [3 ]
Yamaguichi, Yo [2 ]
Guan, Ning [2 ]
Valdes-Garcia, Alberto [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Fujikura Ltd, Koto Ku, Tokyo 1358512, Japan
[3] IBM Corp, Bromont, PQ J2L 1A3, Canada
来源
IEEE JOURNAL OF MICROWAVES | 2025年 / 5卷 / 01期
关键词
Phased arrays; Substrates; Millimeter wave communication; Frequency conversion; 5G mobile communication; Assembly; Radio frequency; Array signal processing; Antenna accessories; Power demand; Phased array; 5G; dual-polarization; heterogeneous integration; SiGe; silicon; antenna spacing; assembly; tile gap; EVM; thermal; packaging; PACKAGE; SYSTEMS;
D O I
10.1109/JMW.2024.3497982
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present the design, assembly, and test of a heterogeneously integrated dual-polarized 256-element 5G phased array covering 24$-$30 GHz. The design is based on a 64-element antenna-in-package tile designed using an organic substrate. This work represents one of the earliest examples of a heterogeneously integrated mmWave phased array module where each tile uses chips in three different substrate technologies to perform beamforming, frequency conversion, filtering, combining/splitting, and supply decoupling functions. The paper discusses the several challenges and system trade-offs for 5G mmWave phased arrays and illustrates the advantages of heterogeneous integration at the antenna-in-package level. The paper also covers, in detail, several practical aspects of phased array module design that are not well-described in existing literature, such as power domain modeling, module assembly, antenna feedline design, polarization isolation, and tile spacing. To demonstrate the efficacy of our design choices and techniques, we present exhaustive $\pm 360<^>\circ$ over-the-air beam characterization of the phased array antenna module demonstrating beam scanning over $\pm 70<^>\circ$ and very low cross-polarization leakage in E-/H-planes in both polarizations and in both TX and RX modes.
引用
收藏
页码:68 / 83
页数:16
相关论文
共 50 条
  • [1] A Scalable Heterogeneous AiP Module for a 256-Element 5G Phased Array
    Liu, Duixian
    Gu, Xiaoxiong
    Baks, Christian
    Masuko, Koichiro
    Tojo, Yujiro
    Watanabe, Atom O.
    Paidimarri, Arun
    Hasegawa, Yuta
    Chandran, Gokul
    Lei, Xu
    Guan, Ning
    Valdes-Garcia, Alberto
    Sadhu, Bodhisatwa
    2023 IEEE 73RD ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, ECTC, 2023, : 467 - 474
  • [2] Asynchronous 256-Element Phased-Array Calibration for 5G Base Station
    Aoki, Yuuichi
    Hwang, Yongan
    Kim, Sunryoul
    Kim, Yonghoon
    Yang, Sung-Gi
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2021, 31 (06) : 798 - 801
  • [3] An Intermodulation Distortion Oriented 256-Element Phased-Array Calibration for 5G Base Station
    Aoki, Yuuichi
    Kim, Yonghoon
    Hwang, Yongan
    Kang, Heedo
    Kim, Sunryoul
    Ryu, An-Sang
    Yang, Sung-Gi
    2022 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS 2022), 2022, : 518 - 521
  • [4] A 24-29.5 GHz 256-Element 5G Phased-Array with 65.5 dBm Peak EIRP and 256-QAM Modulation
    Yin, Yusheng
    Zhang, Zhe
    Kanar, Tumay
    Zihir, Samet
    Rebeiz, Gabriel M.
    PROCEEDINGS OF THE 2020 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2020, : 687 - 690
  • [5] Design and experiment of 256-element ultrasound phased array for noninvasive focused ultrasound surgery
    Lu, Mingzhu
    Wan, Mingxi
    Xu, Feng
    Wang, Xiaodong
    Chang, Xiaozhen
    ULTRASONICS, 2006, 44 (e325-e330) : E325 - E330
  • [6] A 256-Element Phased-Array Relay Transceiver for 5G Network Using 24-GHz Wireless Power Transfer With Discrete ICs
    Ide, Michihiro
    Yuasa, Keito
    Kato, Sena
    Tomura, Takashi
    Okada, Kenichi
    Shirane, Atsushi
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2024, 34 (06): : 793 - 796
  • [7] Field Characterization and Compensation of Vibrational Nonuniformity for a 256-Element Focused Ultrasound Phased Array
    Ghanem, Mohamed A.
    Maxwell, Adam D.
    Kreider, Wayne
    Cunitz, Bryan W.
    Khokhlova, Vera A.
    Sapozhnikov, Oleg A.
    Bailey, Michael R.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (09) : 1618 - 1630
  • [8] A 24-30-GHz 256-Element Dual-Polarized 5G Phased Array Using Fast On-Chip Beam Calculators and Magnetoelectric Dipole Antennas
    Sadhu, Bodhisatwa
    Paidimarri, Arun
    Liu, Duixian
    Yeck, Mark
    Ozdag, Caglar
    Tojo, Yujiro
    Lee, Wooram
    Gu, Kevin Xiaoxiong
    Plouchart, Jean-Olivier
    Baks, Christian W.
    Uemichi, Yusuke
    Chakraborty, Sudipto
    Yamaguchi, Yo
    Guan, Ning
    Valdes-Garcia, Alberto
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, 57 (12) : 3599 - 3616
  • [9] A Scalable 256-Element E-Band Phased-Array Transceiver for Broadband Communications
    Repeta, Morris
    Zhai, Wenyao
    Ross, Tyler
    Ansari, Kimia
    Tiller, Sam
    Pothula, Hari Krishna
    Wessel, David
    Li, Xu
    Cai, Hua
    Liang, Dong
    Wang, Guanjgian
    Tong, Wen
    PROCEEDINGS OF THE 2020 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2020, : 833 - 836
  • [10] A fully integrated 4 × 2 element CMOS RF phased array receiver for 5G
    Rana A. Shaheen
    Rehman Akbar
    Alok Sethi
    Janne P. Aikio
    Timo Rahkonen
    Aarno Pärssinen
    Analog Integrated Circuits and Signal Processing, 2019, 98 : 429 - 440