ASYMPTOTIC BEHAVIOR OF A DELAYED NONLOCAL DISPERSAL LOTKA-VOLTERRA

被引:0
|
作者
Tang, Yiming [1 ]
Wu, Xin [2 ]
Yuan, Rong [3 ]
Geng, Fengjie [1 ]
Ma, Zhaohai [1 ]
机构
[1] China Univ Geosci Beijing, Sch Sci, 29 Xueyuan Rd, Beijing 100083, Peoples R China
[2] East China Jiao Tong Univ, Sch Sci, East Shuanggang St, Nanchang 330013, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Xinjiekouwai St, Beijing 100875, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2025年 / 15卷 / 03期
基金
中国国家自然科学基金;
关键词
Asymptotic stability; nonlo cal dispersal; competitive system; Fourier transform; PLANAR TRAVELING-WAVES; MULTIDIMENSIONAL STABILITY; COOPERATIVE SYSTEMS; SPREADING SPEEDS; DIFFUSION; EQUATION; FRONTS; PHYTOPLANKTON; PROPAGATION; PERSISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the asymptotic behavior of a nonlo cal dispersal Lotka-Volterra competitive system with time delay across the entire RN. We establish L infinity-decay estimates of solutions of linear systems converging to equilibria utilizing the Fourier transform method applied to the fundamental solution and the Fourier splitting technique. For the nonlinear time-delayed nonlocal dispersal Lotka-Volterra competitive system, we leverage the results from linear systems and obtain the long-time behavior of solutions of the nonlinear system manifesting as the form of time-exponential. More precisely, we further deduce L infinity-decay estimates of solutions of the original nonlinear system through the properties of convolution and Ho<spacing diaeresis>lder inequality. Additionally, numerical simulations are presented to bolster the principal theoretical results and illustrate that the time delay impedes species growth.
引用
收藏
页码:1453 / 1482
页数:30
相关论文
共 50 条
  • [1] ASYMPTOTIC BEHAVIOR OF AGE-STRUCTURED AND DELAYED LOTKA-VOLTERRA MODELS
    Perasso, Antoine
    Richard, Quentin
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (05) : 4284 - 4313
  • [2] ENTIRE SOLUTIONS OF LOTKA-VOLTERRA COMPETITION SYSTEMS WITH NONLOCAL DISPERSAL
    郝玉霞
    李万同
    王佳兵
    许文兵
    Acta Mathematica Scientia, 2023, 43 (06) : 2347 - 2376
  • [3] Entire solutions of Lotka-Volterra competition systems with nonlocal dispersal
    Yuxia Hao
    Wantong Li
    Jiabing Wang
    Wenbing Xu
    Acta Mathematica Scientia, 2023, 43 : 2347 - 2376
  • [4] Entire solutions of Lotka-Volterra competition systems with nonlocal dispersal
    Hao, Yuxia
    Li, Wantong
    Wang, Jiabing
    Xu, Wenbing
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2347 - 2376
  • [5] ASYMPTOTIC BEHAVIOR OF NONAUTOMOMOUSDIFFUSIVE LOTKA-VOLTERRA MODEL
    CAO Feng
    CHEN Lansun(Institute Of Mathematics
    Systems Science and Mathematical Sciences, 1998, (02) : 107 - 111
  • [6] MULTIDIMENSIONAL STABILITY OF PLANAR TRAVELING WAVES FOR THE DELAYED NONLOCAL DISPERSAL COMPETITIVE LOTKA-VOLTERRA SYSTEM
    Ma, Zhaohai
    Yuan, Rong
    Wang, Yang
    Wu, Xin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (04) : 2069 - 2091
  • [7] Dynamics of a delayed Lotka-Volterra competition model with directed dispersal
    Ma, Li
    Gao, Jianping
    Li, Dong
    Lian, Wenyan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 71
  • [8] Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays
    Li, Xue-Shi
    Lin, Guo
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (02) : 738 - 744
  • [9] TRAVELING WAVES OF A LOTKA-VOLTERRA STRONG COMPETITION SYSTEM WITH NONLOCAL DISPERSAL
    Zhang, Guo-Bao
    Ma, Ruyun
    Li, Xue-Shi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (02): : 587 - 608
  • [10] Entire solutions of Lotka-Volterra strong competition systems with nonlocal dispersal
    Hao, Yu-Xia
    Li, Wan-Tong
    Zhang, Guo-Bao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):