Learning prototypes from background and latent objects for few-shot semantic segmentation

被引:0
|
作者
Wang, Yicong [1 ]
Huang, Rong [1 ,3 ]
Zhou, Shubo [1 ,3 ]
Jiang, Xueqin [1 ,3 ]
Fang, Zhijun [2 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Donghua Univ, Sch Comp Sci & Technol, Shanghai 201620, Peoples R China
[3] Donghua Univ, Engn Res Ctr Digitized Text & Apparel Technol, Minist Educ, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantic segmentation; Few-shot semantic segmentation; Prototype learning; Self-attention mechanism; NETWORK;
D O I
10.1016/j.knosys.2025.113218
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot semantic segmentation (FSS) aims to segment target object within a given image supported by few samples with pixel-level annotations. Existing FSS framework primarily focuses on target area for learning a target-object prototype while directly neglecting non-target clues. As such, the target-object prototype has not only to segment the target object but also to filter out non-target area simultaneously, resulting in numerous false positives. In this paper, we propose a background and latent-object prototype learning network (BLPLNet), which learns prototypes from not only the target area but also the non-target counterpart. From our perspective, the non-target area is delineated into background full of repeated textures and salient objects, refer to as latent objects in this paper. Specifically, a background mining module (BMM) is developed to specially learn a background prototype by episodic learning. The learned background prototype replaces the target-object one for background filtering, reducing the false positives. Moreover, a latent object mining module (LOMM), based on self-attention mechanism, works together with the BMM for learning multiple soft-orthogonal prototypes from latent objects. Then, the learned latent-object prototypes, which condense the general knowledge of objects, are used in a target object enhancement module (TOEM) to enhance the target-object prototype with the guidance of affinity-based scores. Extensive experiments on PASCAL-5i and COCO-20i datasets demonstrate the superiority of the BLPLNet, which outperforms state-of-the-art methods by an average of 0.60% on PASCAL5i. Ablation studies validate the effectiveness of each component, and visualization results indicate that the learned latent-object prototypes indeed convey the general knowledge of objects.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Learning Orthogonal Prototypes for Generalized Few-shot Semantic Segmentation
    Liu, Sun-Ao
    Zhang, Yiheng
    Qiu, Zhaofan
    Xie, Hongtao
    Zhang, Yongdong
    Yao, Ting
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11319 - 11328
  • [2] Query semantic reconstruction for background in few-shot segmentation
    Guan, Haoyan
    Spratling, Michael
    VISUAL COMPUTER, 2024, 40 (02): : 799 - 810
  • [3] Query semantic reconstruction for background in few-shot segmentation
    Haoyan Guan
    Michael Spratling
    The Visual Computer, 2024, 40 (2) : 799 - 810
  • [4] LEARNING WITH MEMORY FOR FEW-SHOT SEMANTIC SEGMENTATION
    Lu, Hongchao
    Wei, Chao
    Deng, Zhidong
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 629 - 633
  • [5] APANet: Adaptive Prototypes Alignment Network for Few-Shot Semantic Segmentation
    Chen, Jiacheng
    Gao, Bin-Bin
    Lu, Zongqing
    Xue, Jing-Hao
    Wang, Chengjie
    Liao, Qingmin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4361 - 4373
  • [6] FBINet: Few-Shot Semantic Segmentation With Foreground and Background Iteration
    Huang, Zhifu
    Chen, Ziwei
    Liu, Yu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [7] Exploring Hierarchical Prototypes for Few-Shot Segmentation
    Chen, Yaozong
    Cao, Wenming
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT I, 2022, 13604 : 42 - 53
  • [8] SML: Semantic meta-learning for few-shot semantic segmentation * *
    Pambala, Ayyappa Kumar
    Dutta, Titir
    Biswas, Soma
    PATTERN RECOGNITION LETTERS, 2021, 147 : 93 - 99
  • [9] Semantic Guided Latent Parts Embedding for Few-Shot Learning
    Yang, Fengyuan
    Wang, Ruiping
    Chen, Xilin
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5436 - 5446
  • [10] Generalized Few-shot Semantic Segmentation
    Tian, Zhuotao
    Lai, Xin
    Jiang, Li
    Liu, Shu
    Shu, Michelle
    Zhao, Hengshuang
    Jia, Jiaya
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 11553 - 11562