More on Jacobi metric: Randers-Finsler metrics, frame dragging and geometrisation techniques

被引:1
|
作者
Chanda, Sumanto [1 ]
机构
[1] Indian Inst Astrophys, Block 2,100 Feet Rd, Bengaluru 560034, Karnataka, India
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 11期
关键词
MECHANICS;
D O I
10.1140/epjp/s13360-024-05775-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, I demonstrate a new method to derive Jacobi metrics from Randers-Finsler metrics by introducing a more generalised approach to Hamiltonian mechanics for such spacetimes and discuss the related applications and properties. I introduce Hamiltonian mechanics with the constraint for relativistic momentum, including a modification for null curves and two applications as exercises: derivation of a relativistic harmonic oscillator and analysis of Schwarzschild Randers-Finsler metric. Then I describe the main application for constraint mechanics in this article: a new derivation of Jacobi metric for time-like and null curves, comparing the latter with optical metrics. After that, I discuss frame dragging with the Jacobi metric and two applications for Randers-Finsler metrics: an alternative to Eisenhart lift, and different metrics that share the same Jacobi metric.
引用
收藏
页数:18
相关论文
共 3 条
  • [1] Jacobi-Maupertuis Randers-Finsler metric for curved spaces and the gravitational magnetoelectric effect
    Chanda, Sumanto
    Gibbons, G. W.
    Guha, Partha
    Maraner, Paolo
    Werner, Marcus C.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (12)
  • [2] A class of Finsler metrics projectively related to a Randers metric
    Chen, Guangzu
    Cheng, Xinyue
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (3-4): : 351 - 363
  • [3] RETRACTED ARTICLE: A Family of Finsler Metrics Projectively Related to a Randers Metric
    A. Tayebi
    E. Peyghan
    H. Sadeghi
    Results in Mathematics, 2013, 63 (3-4) : 1423 - 1423