Specializations of iterated Galois groups of PCF rational functions

被引:0
|
作者
Benedetto, Robert L. [1 ]
Ghioca, Dragos [2 ]
Juul, Jamie [3 ]
Tucker, Thomas J. [4 ]
机构
[1] Amherst Coll, Dept Math & Stat, POB 5000, Amherst, MA 01002 USA
[2] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[3] Colorado State Univ, Dept Math, 1874 Campus Delivery, Ft Collins, CO 80523 USA
[4] Univ Rochester, Dept Math, Hylan Bldg, Rochester, NY 14627 USA
基金
加拿大自然科学与工程研究理事会;
关键词
ODONIS CONJECTURE; WREATH-PRODUCTS; REPRESENTATIONS;
D O I
10.1007/s00208-025-03110-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a criterion for when the specialization of the iterated Galois group for a post-critically finite (PCF) rational map is as large as possible, i.e., it equals the generic iterated Galois group for the given map.
引用
收藏
页码:1031 / 1050
页数:20
相关论文
共 50 条
  • [1] Diagonals of rational functions and selected differential Galois groups
    Bostan, A.
    Boukraa, S.
    Maillard, J-M
    Weil, J-A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (50)
  • [2] Arboreal Galois groups for quadratic rational functions with colliding critical points
    Benedetto, Robert L.
    Dietrich, Anna
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (01)
  • [4] A question for iterated Galois groups in arithmetic dynamics
    Bridy, Andrew
    Doyle, John R.
    Ghioca, Dragos
    Hsia, Liang-Chung
    Tucker, Thomas J.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (02): : 401 - 417
  • [5] Periods of iterated rational functions
    Burnette, Charles
    Schmutz, Eric
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (05) : 1301 - 1315
  • [6] Uniformly perfect sets, rational semigroups, Kleinian groups and iterated functions systems
    Stankewitz, R
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 383 - 388
  • [7] Cmputation of Galois groups of rational polynomials
    Fieker, Claus
    Klueners, Juergen
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2014, 17 (01): : 141 - 158
  • [8] Iterated monodromy groups of rational functions and periodic points over finite fields
    Bridy, Andrew
    Jones, Rafe
    Kelsey, Gregory
    Lodge, Russell
    MATHEMATISCHE ANNALEN, 2024, 390 (01) : 439 - 475
  • [9] On arboreal Galois representations of rational functions
    Swaminathan, Ashvin A.
    JOURNAL OF ALGEBRA, 2016, 448 : 104 - 126
  • [10] Galois theory of quadratic rational functions
    Jones, Rafe
    Manes, Michelle
    COMMENTARII MATHEMATICI HELVETICI, 2014, 89 (01) : 173 - 213