Downscaling GRACE-derived ocean bottom pressure anomalies using self-supervised data fusion

被引:0
|
作者
Gou, Junyang [1 ]
Boerger, Lara [2 ]
Schindelegger, Michael [2 ]
Soja, Benedikt [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Geodesy & Photogrammetry, Zurich, Switzerland
[2] Univ Bonn, Inst Geodesy & Geoinformat, Bonn, Germany
关键词
Downscaling; Ocean bottom pressure; GRACE(-FO); Ocean dynamics; Deep learning; TIME-VARIABLE GRAVITY; SEA-LEVEL; TRANSPORT VARIABILITY; MASS-CHANGE; LARGE-SCALE; DEEP-OCEAN; MODEL; CIRCULATION; COHERENCE; DRIVEN;
D O I
10.1007/s00190-025-01943-9
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The gravimetry measurements from the Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO) mission provide an essential way to monitor changes in ocean bottom pressure (pb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_b$$\end{document}), which is a critical variable in understanding ocean circulation. However, the coarse spatial resolution of the GRACE(-FO) fields blurs important spatial details, such as pb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_b$$\end{document} gradients. In this study, we employ a self-supervised deep learning algorithm to downscale global monthly pb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_b$$\end{document} anomalies derived from GRACE(-FO) observations to an equal-angle 0.25 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ <^>{\circ }$$\end{document} grid in the absence of high-resolution ground truth. The optimization process is realized by constraining the outputs to follow the large-scale mass conservation contained in the gravity field estimates while learning the spatial details from two ocean reanalysis products. The downscaled product agrees with GRACE(-FO) solutions over large ocean basins at the millimeter level in terms of equivalent water height and shows signs of outperforming them when evaluating short spatial scale variability. In particular, the downscaled pb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_b$$\end{document} product has more realistic signal content near the coast and exhibits better agreement with tide gauge measurements at around 80% of 465 globally distributed stations. Our method presents a novel way of combining the advantages of satellite measurements and ocean models at the product level, with potential downstream applications for studies of the large-scale ocean circulation, coastal sea level variability, and changes in global geodetic parameters.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Statistical Downscaling of GRACE-Derived Groundwater Storage Using ET Data in the North China Plain
    Yin, Wenjie
    Hu, Litang
    Zhang, Menglin
    Wang, Jingrui
    Han, Shin-Chan
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (11) : 5973 - 5987
  • [2] Drought monitoring by downscaling GRACE-derived terrestrial water storage anomalies: A deep learning approach
    Foroumandi, Ehsan
    Nourani, Vahid
    Huang, Jinhui Jeanne
    Moradkhani, Hamid
    JOURNAL OF HYDROLOGY, 2023, 616
  • [3] Enhancing spatial resolution of GRACE-derived groundwater storage anomalies in Urmia catchment using machine learning downscaling methods
    Sabzehee, F.
    Amiri-Simkooei, A. R.
    Iran-Pour, S.
    Vishwakarma, B. D.
    Kerachian, R.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 330
  • [4] Self-Supervised Shear Wave Noise Adaptive Subtraction in Ocean Bottom Node Data
    Chen, Lin
    Chen, Zhihao
    Wu, Bangyu
    Gao, Jing
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [5] Impact of assimilating bottom pressure anomalies from GRACE on ocean circulation estimates
    Koehl, Armin
    Siegismund, Frank
    Stammer, Detlef
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2012, 117
  • [6] CONTRASTIVE SELF-SUPERVISED DATA FUSION FOR SATELLITE IMAGERY
    Scheibenreif, Linus
    Mommert, Michael
    Borth, Damian
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 5-3 : 705 - 711
  • [7] Deep learning-aided temporal downscaling of GRACE-derived terrestrial water storage anomalies across the Contiguous United States
    Uz, Metehan
    Akyilmaz, Orhan
    Shum, C. K.
    JOURNAL OF HYDROLOGY, 2024, 645
  • [8] North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies
    Landerer, Felix W.
    Wiese, David N.
    Bentel, Katrin
    Boening, Carmen
    Watkins, Michael M.
    GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (19) : 8114 - 8121
  • [9] A pattern-filtering method for the determination of ocean bottom pressure anomalies from GRACE solutions
    Boening, C.
    Timmermann, R.
    Macrander, A.
    Schroeter, J.
    GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (18)
  • [10] Reconstructing GRACE-derived terrestrial water storage anomalies with in-situ groundwater level measurements and meteorological forcing data
    Li, Peijun
    Zha, Yuanyuan
    Tso, Chak-Hau Michael
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2023, 50