A New Condition on the Vorticity for Partial Regularity of a Local Suitable Weak Solution to the Navier-Stokes Equations

被引:0
|
作者
Chae, Dongho [1 ]
Wolf, Jorg [1 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 156756, South Korea
关键词
PROOF;
D O I
10.1007/s00205-024-02068-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a new epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-condition for the vorticity of a suitable weak solution to the Navier-Stokes equations that leads to partial regularity. This refines the well known limsup condition of the Caffarelli-Kohn-Nirenberg Theorem by a new condition on the vorticity, replacing limsup by a suitable range of the radius r of the parabolic cylinders. As a consequence, the partial regularity is obtained directly from this epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-condition of the vorticity without relying on the epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-condition of the velocity. Furthermore, by the local nature of the method this result holds for any local suitable weak solution of the Navier-Stokes equations in a general domain.
引用
收藏
页数:23
相关论文
共 50 条