Cost-optimal adaptive FEM with linearization and algebraic solver for semilinear elliptic PDEs

被引:0
|
作者
Brunner, Maximilian [1 ]
Praetorius, Dirk [1 ]
Streitberger, Julian [1 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
FINITE-ELEMENT-METHOD; OPTIMAL CONVERGENCE-RATES; STOPPING CRITERIA;
D O I
10.1007/s00211-025-01455-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider scalar semilinear elliptic PDEs, where the nonlinearity is strongly monotone, but only locally Lipschitz continuous. To linearize the arising discrete nonlinear problem, we employ a damped Zarantonello iteration, which leads to a linear Poisson-type equation that is symmetric and positive definite. The resulting system is solved by a contractive algebraic solver such as a multigrid method with local smoothing. We formulate a fully adaptive algorithm that equibalances the various error components coming from mesh refinement, iterative linearization, and algebraic solver. We prove that the proposed adaptive iteratively linearized finite element method (AILFEM) guarantees convergence with optimal complexity, where the rates are understood with respect to the overall computational cost (i.e., the computational time). Numerical experiments investigate the involved adaptivity parameters.
引用
收藏
页码:409 / 445
页数:37
相关论文
共 34 条
  • [1] Cost-optimal adaptive iterative linearized FEM for semilinear elliptic PDEs
    Becker, Roland
    Brunner, Maximilian
    Innerberger, Michael
    Melenk, Jens Markus
    Praetorius, Dirk
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 2193 - 2225
  • [2] Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs
    Becker, Roland
    Brunner, Maximilian
    Innerberger, Michael
    Melenk, Jens Markus
    Praetorius, Dirk
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 118 : 18 - 35
  • [3] Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs
    Brunner, Maximilian
    Innerberger, Michael
    Miraci, Ani
    Praetorius, Dirk
    Streitberger, Julian
    Heid, Pascal
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 44 (03) : 1560 - 1596
  • [4] Combinatorial optimal control of semilinear elliptic PDEs
    Buchheim, Christoph
    Kuhlmann, Renke
    Meyer, Christian
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 70 (03) : 641 - 675
  • [5] Combinatorial optimal control of semilinear elliptic PDEs
    Christoph Buchheim
    Renke Kuhlmann
    Christian Meyer
    Computational Optimization and Applications, 2018, 70 : 641 - 675
  • [6] Convergence and quasi-optimal cost of adaptive algorithms for nonlinear operators including iterative linearization and algebraic solver
    Alexander Haberl
    Dirk Praetorius
    Stefan Schimanko
    Martin Vohralík
    Numerische Mathematik, 2021, 147 : 679 - 725
  • [7] Convergence and quasi-optimal cost of adaptive algorithms for nonlinear operators including iterative linearization and algebraic solver
    Haberl, Alexander
    Praetorius, Dirk
    Schimanko, Stefan
    Vohralik, Martin
    NUMERISCHE MATHEMATIK, 2021, 147 (03) : 679 - 725
  • [8] A COST-OPTIMAL PARALLEL TRIDIAGONAL SYSTEM SOLVER
    LIN, FC
    CHUNG, KL
    PARALLEL COMPUTING, 1990, 15 (1-3) : 189 - 199
  • [9] Optimal complexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs
    Bringmann, Philipp
    Brunner, Maximilian
    Praetorius, Dirk
    Streitberger, Julian
    JOURNAL OF NUMERICAL MATHEMATICS, 2024,
  • [10] Risk-averse optimal control of semilinear elliptic PDEs******
    Kouri, D. P.
    Surowiec, T. M.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26