On the circulant matrix MDS testing and the search for circulant MDS matrices

被引:0
|
作者
Malakhov, Stanislav S. [1 ]
机构
[1] HSE Univ, Moscow, Russia
关键词
Circulant matrix; Double circulant code; MDS code; MDS matrix; CODES;
D O I
10.1007/s12095-024-00746-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
MDS matrices are used in symmetric cryptography to hinder differential and linear cryptanalysis. This article proposes and examines a new deterministic method that accelerates circulant matrix MDS testing and the search for circulant MDS matrices. The method is to ascertain the MDS property via computing the determinants of only those submatrices that lie in a suitable subset of square submatrices constructed in advance. It is shown that for 8x8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 8 \times 8 $$\end{document} circulant matrices, this new method reduces thirteenfold the MDS confirmation time and searches for MDS matrices 8 times faster compared to the general method employing all square submatrices. The article also proves that the constructed set can be arranged in a manner that comprises all the submatrices needed for the Laplace expansion of the determinant of any submatrix within the subset. Experiments show that the Laplace expansion allows a further two to seven times speed-up of the MDS testing. Via proposed techniques, several circulant MDS matrices were found including 8x8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{8} \times \varvec{8}$$\end{document} matrices over GF(28)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\textbf {GF}}\varvec{(2<^>8)} $$\end{document} and 16x16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{16} \times \varvec{16} $$\end{document} matrices over GF(222),GF(223)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\textbf {GF}}\varvec{(2<^>{22}),} {\textbf {GF}}\varvec{(2<^>{23})} $$\end{document} and GF(224)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\textbf {GF}}\varvec{(2<^>{24})} $$\end{document} with many multiplicative identity element entries, a few different elements of the low Hamming weight and efficient inverses. Besides that, empirical probability mass functions were found for the random variables representing the least dimension of singular submatrices of 16x16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{16} \times \varvec{16} $$\end{document} circulant matrices of two chosen forms over GF(2m),m is an element of{8,& ctdot;,24}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\textbf {GF}}\varvec{(2<^>m), m \in \{8, \dots , 24\}} $$\end{document}.
引用
收藏
页码:87 / 119
页数:33
相关论文
共 50 条
  • [1] On Orthogonal Circulant MDS Matrices
    Adhiguna, Ichlas
    Arifin, Izdihar Salsabila Noor
    Yuliawan, Fajar
    Muchtadi-Alamsyah, Intan
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (04): : 1619 - 1637
  • [2] On circulant involutory MDS matrices
    Victor Cauchois
    Pierre Loidreau
    Designs, Codes and Cryptography, 2019, 87 : 249 - 260
  • [3] On circulant involutory MDS matrices
    Cauchois, Victor
    Loidreau, Pierre
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (2-3) : 249 - 260
  • [4] Lightweight MDS Generalized Circulant Matrices
    Liu, Meicheng
    Sim, Siang Meng
    FAST SOFTWARE ENCRYPTION (FSE 2016), 2016, 9783 : 101 - 120
  • [5] THE CONSTRUCTION OF CIRCULANT MATRICES RELATED TO MDS MATRICES
    Malakhov, S. S.
    Rozhkov, M., I
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2022, (56): : 17 - 27
  • [6] CIRCULANT, CIRCULANT-LIKE AND ORTHOGONAL MDS GENERALIZED CAUCHY MATRICES
    Mousavi, Mohsen
    Esmaeili, Morteza
    Gulliver, T. Aaron
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2025, 19 (02) : 716 - 735
  • [7] On the Construction of Lightweight Circulant Involutory MDS Matrices
    Li, Yongqiang
    Wang, Mingsheng
    FAST SOFTWARE ENCRYPTION (FSE 2016), 2016, 9783 : 121 - 139
  • [8] Cryptographically significant MDS matrices based on circulant and circulant-like matrices for lightweight applications
    Kishan Chand Gupta
    Indranil Ghosh Ray
    Cryptography and Communications, 2015, 7 : 257 - 287
  • [9] Cryptographically significant MDS matrices based on circulant and circulant-like matrices for lightweight applications
    Gupta, Kishan Chand
    Ray, Indranil Ghosh
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2015, 7 (02): : 257 - 287
  • [10] More Constructions of Light MDS Transforms Based on Known MDS Circulant Matrices
    Wang, Jin-Bo
    Wu, You
    Zhou, Yu
    INFORMATION, 2022, 13 (07)