Efficient remote sensing image classification using the novel STConvNeXt convolutional network

被引:0
|
作者
Liu, Bo [1 ]
Zhan, Chenmei [1 ]
Guo, Cheng [1 ]
Liu, Xiaobo [2 ]
Ruan, Shufen [1 ,3 ]
机构
[1] Wuhan Text Univ, Math & Phys Sci, Wuhan, Peoples R China
[2] China Univ Geosci, Automat, Wuhan, Peoples R China
[3] Wuhan Text Univ, Res Ctr Appl Math & Interdisciplinary Sci, Wuhan, Hubei, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Convolutional neural networks; Deep learning; Remote sensing; SMConv; Tree structures; SCENE CLASSIFICATION; ATTENTION; SYSTEM;
D O I
10.1038/s41598-025-92629-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Remote sensing images present formidable classification challenges due to their complex spatial organization, high inter-class similarity, and significant intra-class variability. To address the balance between computational efficiency and feature extraction capability in existing methods, this paper innovatively proposes a lightweight convolutional network, STConvNeXt. In its architectural design, the model incorporates a split-based mobile convolution module with a hierarchical tree structure. It employs parameterized depthwise separable convolutions to reduce computational complexity and constructs a multi-level feature tree to facilitate cross-scale feature fusion. For feature enhancement, a fast pyramid pooling module replaces the traditional spatial pyramid structure, effectively reducing the number of parameters while preserving large-scale contextual awareness. In terms of training strategy, a dynamic threshold loss function is introduced, utilizing a learnable inter-class margin to improve the model's ability to distinguish difficult-to-classify samples. Systematic experiments on the UCMerced, AID, and NWPU-RESISC45 benchmark datasets validate the effectiveness of the proposed approach: compared with the ConvNeXt baseline, STConvNeXt reduces both parameter count (by 56.49%) and FLOPs (by 49.89%), while improving classification accuracy by 1.2-2.7%. Furthermore, compared with the current state-of-the-art remote sensing scene classification models, our method still exhibits significant advantages. Ablation studies further confirm the effectiveness of each module design, particularly demonstrating that the model maintains excellent classification accuracy despite a substantial reduction in parameters.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification
    Yu, Donghang
    Xu, Qing
    Guo, Haitao
    Zhao, Chuan
    Lin, Yuzhun
    Li, Daoji
    SENSORS, 2020, 20 (07)
  • [2] Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network
    Lei, Runmin
    Zhang, Chunju
    Liu, Wencong
    Zhang, Lei
    Zhang, Xueying
    Yang, Yucheng
    Huang, Jianwei
    Li, Zhenxuan
    Zhou, Zhiyi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8297 - 8315
  • [3] Scene classification of remote sensing image using ensemble convolutional neural network
    Yu D.
    Zhang B.
    Zhao C.
    Guo H.
    Lu J.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (06): : 717 - 727
  • [4] Improved convolutional neural network in remote sensing image classification
    Binghui Xu
    Neural Computing and Applications, 2021, 33 : 8169 - 8180
  • [5] Improved convolutional neural network in remote sensing image classification
    Xu, Binghui
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14): : 8169 - 8180
  • [6] Hyperspectral Remote Sensing Image Classification Based on Convolutional Neural Network
    Dai, Xiangyang
    Xue, Wei
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 10373 - 10377
  • [7] DCNNet: A Distributed Convolutional Neural Network for Remote Sensing Image Classification
    Zhang, Ting
    Wang, Zhirui
    Cheng, Peirui
    Xu, Guangluan
    Sun, Xian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] DCNNet: A Distributed Convolutional Neural Network for Remote Sensing Image Classification
    Zhang, Ting
    Wang, Zhirui
    Cheng, Peirui
    Xu, Guangluan
    Sun, Xian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] Efficient Convolutional Neural Architecture Search for Remote Sensing Image Scene Classification
    Peng, Cheng
    Li, Yangyang
    Jiao, Licheng
    Shang, Ronghua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07): : 6092 - 6105
  • [10] Scene Classification of Remote Sensing Image Based on Deep Convolutional Neural Network
    Yang, Zhou
    Mu, Xiao-dong
    Zhao, Feng-an
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806