A fine-tuned large language model based molecular dynamics agent for code generation to obtain material thermodynamic parameters

被引:0
|
作者
Zhuofan Shi [1 ]
Chunxiao Xin [2 ]
Tong Huo [3 ]
Yuntao Jiang [1 ]
Bowen Wu [2 ]
Xingyue Chen [3 ]
Wei Qin [2 ]
Xinjian Ma [3 ]
Gang Huang [4 ]
Zhenyu Wang [1 ]
Xiang Jing [2 ]
机构
[1] Peking University,School of Software and Microelectronics
[2] National Key Laboratory of Data Space Technology and System,Institute of Information Engineering
[3] Advanced Institute of Big Data,undefined
[4] Chinese Academy of Sciences,undefined
关键词
LLM; Agent; Materials science;
D O I
10.1038/s41598-025-92337-6
中图分类号
学科分类号
摘要
In the field of materials science, addressing the complex relationship between the material structure and properties has increasingly involved leveraging the text generation capabilities of AI-generated content (AIGC) models for tasks that include literature mining and data analysis. However, theoretical calculations and code development remain labor-intensive challenges. This paper proposes a novel approach based on text-to-code generation, utilizing large language models to automate the implementation of simulation programs in materials science. The effectiveness of automated code generation and review is validated with thermodynamics simulations based on the LAMMPS software as a foundation. This study introduces Molecular Dynamics Agent (MDAgent), a framework designed to guide large models in automatically generating, executing, and refining simulation code. In addition, a thermodynamic simulation code dataset for LAMMPS was constructed to fine-tune the language model. Expert evaluation scores demonstrate that MDAgent significantly improves the code generation and review capabilities. The proposed approach reduces the average task time by 42.22%, as compared to traditional models, thus highlighting its potential applications in the field of materials science.
引用
收藏
相关论文
共 38 条
  • [1] Exploring Generalizability of a fine-tuned Large Language Model for Impression Generation in PET Reports
    Yousefirizi, F.
    Wang, L.
    Gowdy, C.
    Shariftabrizi, A.
    Harsini, S.
    Ahamed, S.
    Sabouri, M.
    Mollaheydar, E.
    Rahmim, A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S785 - S785
  • [2] CentralBankRoBERTa: A fine-tuned large language model for central bank communications☆
    Pfeifer, Moritz
    Marohl, Vincent P.
    JOURNAL OF FINANCE AND DATA SCIENCE, 2023, 9
  • [3] Comparative Analysis of Generic and Fine-Tuned Large Language Models for Conversational Agent Systems
    Villa, Laura
    Carneros-Prado, David
    Dobrescu, Cosmin C.
    Sanchez-Miguel, Adrian
    Cubero, Guillermo
    Hervas, Ramon
    ROBOTICS, 2024, 13 (05)
  • [4] AECR: Automatic attack technique intelligence extraction based on fine-tuned large language model
    Chen, Minghao
    Zhu, Kaijie
    Lu, Bin
    Li, Ding
    Yuan, Qingjun
    Zhu, Yuefei
    COMPUTERS & SECURITY, 2025, 150
  • [5] Taiyi: a bilingual fine-tuned large language model for diverse biomedical tasks
    Luo, Ling
    Ning, Jinzhong
    Zhao, Yingwen
    Wang, Zhijun
    Ding, Zeyuan
    Chen, Peng
    Fu, Weiru
    Han, Qinyu
    Xu, Guangtao
    Qiu, Yunzhi
    Pan, Dinghao
    Li, Jiru
    Li, Hao
    Feng, Wenduo
    Tu, Senbo
    Liu, Yuqi
    Yang, Zhihao
    Wang, Jian
    Sun, Yuanyuan
    Lin, Hongfei
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (09) : 1865 - 1874
  • [6] Classification of Interventional Radiology Reports into Technique Categories with a Fine-Tuned Large Language Model
    Yasaka, Koichiro
    Nomura, Takuto
    Kamohara, Jun
    Hirakawa, Hiroshi
    Kubo, Takatoshi
    Kiryu, Shigeru
    Abe, Osamu
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024,
  • [7] BASHEXPLAINER: Retrieval-Augmented Bash Code Comment Generation based on Fine-tuned CodeBERT
    Yu, Chi
    Yang, Guang
    Chen, Xiang
    Liu, Ke
    Zhou, Yanlin
    2022 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME 2022), 2022, : 82 - 93
  • [8] Assessment of fine-tuned large language models for real-world chemistry and material science applications
    Van Herck, Joren
    Gil, Maria Victoria
    Jablonka, Kevin Maik
    Abrudan, Alex
    Anker, Andy S.
    Asgari, Mehrdad
    Blaiszik, Ben
    Buffo, Antonio
    Choudhury, Leander
    Corminboeuf, Clemence
    Daglar, Hilal
    Elahi, Amir Mohammad
    Foster, Ian T.
    Garcia, Susana
    Garvin, Matthew
    Godin, Guillaume
    Good, Lydia L.
    Gu, Jianan
    Xiao Hu, Noemie
    Jin, Xin
    Junkers, Tanja
    Keskin, Seda
    Knowles, Tuomas P. J.
    Laplaza, Ruben
    Lessona, Michele
    Majumdar, Sauradeep
    Mashhadimoslem, Hossein
    Mcintosh, Ruaraidh D.
    Moosavi, Seyed Mohamad
    Mourino, Beatriz
    Nerli, Francesca
    Pevida, Covadonga
    Poudineh, Neda
    Rajabi-Kochi, Mahyar
    Saar, Kadi L.
    Hooriabad Saboor, Fahimeh
    Sagharichiha, Morteza
    Schmidt, K. J.
    Shi, Jiale
    Simone, Elena
    Svatunek, Dennis
    Taddei, Marco
    Tetko, Igor
    Tolnai, Domonkos
    Vahdatifar, Sahar
    Whitmer, Jonathan
    Wieland, D. C. Florian
    Willumeit-Roemer, Regine
    Zuttel, Andreas
    Smit, Berend
    CHEMICAL SCIENCE, 2025, 16 (02) : 670 - 684
  • [9] Fine Tuning Large Language Model for Secure Code Generation
    Li, Junjie
    Sangalay, Aseem
    Cheng, Cheng
    Tian, Yuan
    Yang, Jinqiu
    PROCEEDINGS 2024 IEEE/ACM FIRST INTERNATIONAL CONFERENCE ON AI FOUNDATION MODELS AND SOFTWARE ENGINEERING, FORGE 2024, 2024, : 86 - 90
  • [10] EpilepsyLLM: Domain-Specific Large Language Model Fine-tuned with Epilepsy Medical Knowledge
    Zhao, Xuyang
    Zhao, Qibin
    Tanaka, Toshihisa
    arXiv,