Identifying influential nodes in complex networks by adjusted feature contributions and neighborhood impact

被引:0
|
作者
Esfandiari, Shima [1 ]
Fakhrahmad, Seyed Mostafa [1 ]
机构
[1] Shiraz Univ, Comp Sci & Engn & IT, Shiraz, Iran
来源
JOURNAL OF SUPERCOMPUTING | 2025年 / 81卷 / 03期
关键词
Influential nodes; Complex networks; Degree; K-Shell; SIR; SPREADERS; RANKING;
D O I
10.1007/s11227-024-06645-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Determining the spreading ability of nodes is considered a fundamental issue in network science, with numerous applications in controlling system failure, rumors spreading, and product advertising. Many methods have been proposed to identify influential nodes, which, despite their advantages, suffer from high time complexity, low accuracy, and low resolution. This paper presents a feature based on K-Shell and the degree applied to the node and its neighbors. It adjusts the contribution of various features. The number of selected neighbors and the influence of each neighbor are chosen according to the structural features of the graph. The actual spreading ability of the node is measured with the Susceptible-Infected-Recovered (SIR) model, and the evaluations include accuracy, precision, resolution, correlation, Kolmogorov-Smirnov Test, and time complexity. Assessing 14 real-world and 20 artificial networks compared to 12 recent methods, such as the HGSM (Hybrid Global Structure Model), indicates that the proposed method performs best in various aspects.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Identifying Influential Nodes in Complex Networks Based on Neighborhood Entropy Centrality
    Qiu, Liqing
    Zhang, Jianyi
    Tian, Xiangbo
    Zhang, Shuang
    COMPUTER JOURNAL, 2021, 64 (10): : 1465 - 1476
  • [2] Identifying influential nodes in complex networks
    Chen, Duanbing
    Lu, Linyuan
    Shang, Ming-Sheng
    Zhang, Yi-Cheng
    Zhou, Tao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) : 1777 - 1787
  • [3] Identifying influential nodes in complex networks through the k-shell index and neighborhood information
    Esfandiari, Shima
    Moosavi, Mohammad Reza
    JOURNAL OF COMPUTATIONAL SCIENCE, 2025, 84
  • [4] Identifying influential nodes in complex networks with community structure
    Zhang, Xiaohang
    Zhu, Ji
    Wang, Qi
    Zhao, Han
    KNOWLEDGE-BASED SYSTEMS, 2013, 42 : 74 - 84
  • [5] A novel measure of identifying influential nodes in complex networks
    Lv, Zhiwei
    Zhao, Nan
    Xiong, Fei
    Chen, Nan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 523 : 488 - 497
  • [6] Identifying influential nodes in complex networks based on AHP
    Bian, Tian
    Hu, Jiantao
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 479 : 422 - 436
  • [7] Identifying influential nodes in complex networks via Transformer
    Chen, Leiyang
    Xi, Ying
    Dong, Liang
    Zhao, Manjun
    Li, Chenliang
    Liu, Xiao
    Cui, Xiaohui
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (05)
  • [8] A novel potential edge weight method for identifying influential nodes in complex networks based on neighborhood and position
    Meng, Lei
    Xu, Guiqiong
    Yang, Pingle
    Tu, Dengqin
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 60
  • [9] Identifying and ranking influential spreaders in complex networks by neighborhood coreness
    Bae, Joonhyun
    Kim, Sangwook
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 395 : 549 - 559
  • [10] InfGCN: Identifying influential nodes in complex networks with graph convolutional networks
    Zhao, Gouheng
    Jia, Peng
    Zhou, Anmin
    Zhang, Bing
    NEUROCOMPUTING, 2020, 414 (414) : 18 - 26