Diffusion Approximation of Loss Queueing Systems

被引:0
|
作者
Limnios, Nikolaos [1 ]
Wu, Bei [2 ]
机构
[1] Sorbonne Univ Alliance, Univ Technol Compiegne, Paris, France
[2] Northwestern Polytech Univ, Sch Management, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Queuing loss system; Averaging; Diffusion approximation; Normal deviation; Markov process;
D O I
10.1007/s11009-025-10141-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A queueing loss system with N independent sources, without buffer, and n servers, is considered here (N > n). Arrivals and service times are Poisson and exponentially distributed, respectively. We present averaging and diffusion approximation results as the number of sources and service facilities becomes together large.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Diffusion approximation and filtering for a queueing system with repeats
    Lukashuk, L.I.
    Cybernetics (English Translation of Kibernetika), 1990, 26 (02):
  • [2] Diffusion approximation in overloaded switching queueing models
    Anisimov, VV
    QUEUEING SYSTEMS, 2002, 40 (02) : 143 - 182
  • [3] Diffusion Approximation in Overloaded Switching Queueing Models
    Vladimir V. Anisimov
    Queueing Systems, 2002, 40 : 143 - 182
  • [4] Gaussian Approximation for Multichannel Queueing Systems
    Afanas'eva, Larisa G.
    ADVANCES IN DATA ANALYSIS: THEORY AND APPLICATIONS TO RELIABILITY AND INFERENCE, DATA MINING, BIOINFORMATICS, LIFETIME DATA, AND NEURAL NETWORKS, 2010, : 117 - 128
  • [5] Operational queueing system in the scheme of diffusion approximation with evolution averaging
    Mamonova H.V.
    Ukrainian Mathematical Journal, 2006, 58 (5) : 798 - 807
  • [6] Modeling and simulation of mixed queueing and loss systems
    Fodor, Gabor
    Blaabjerg, Soren
    Andersen, Allan T.
    Wireless Personal Communications, 1998, 8 (03): : 253 - 276
  • [7] Modeling and Simulation of Mixed Queueing and Loss Systems
    Fodor G.
    Blaabjerg S.
    Andersen A.T.
    Wireless Personal Communications, 1998, 8 (3) : 253 - 276
  • [8] Regenerative Analysis and Approximation of Queueing Systems with Superposed Input Processes
    Peshkova, Irina
    Morozov, Evsey
    Pagano, Michele
    MATHEMATICS, 2024, 12 (14)
  • [9] APPROXIMATION TECHNIQUES FOR QUEUEING SYSTEMS - A TELETRAFFIC TYPE APPROACH. .
    Sanders, Bart
    Haemers, Wilhelmus H.
    Wilcke, Robert
    AEU. Archiv fur Elektronik und Ubertragungstechnik, 1988, 42 (03): : 145 - 150
  • [10] Quasi-geometric and Gamma Approximation for Retrial Queueing Systems
    Fedorova, Ekaterina
    INFORMATION TECHNOLOGIES AND MATHEMATICAL MODELLING, 2014, 487 : 123 - 136