An experimental analysis of air flow-induced piezoelectric energy harvesting using flexible poly (vinylidene fluoride) nanocomposite films

被引:0
|
作者
Nivedhitha, D. M. [1 ]
Jeyanthi, S. [1 ]
Rithish, B. [1 ]
Charan, B. G. Sai [1 ]
Ravi, S. [1 ]
Vinayagamurthy, G. [1 ]
Thiagamani, Senthil Muthu Kumar [2 ,3 ,4 ]
机构
[1] Vellore Inst Technol, Sch Mech Engn, Chennai Campus, Chennai 600127, Tamil Nadu, India
[2] Kalasalingam Acad Res & Educ, Dept Mech Engn, Krishnan Kovil 626138, Tamil Nadu, India
[3] INTI Int Univ, Dept Mech Engn, Persiaran Perdana BBN, Nilai 71800, Negeri Sembilan, Malaysia
[4] Univ Teknol Malaysia, Ctr Adv Composite Mat, Johor Baharu 81310, Johor, Malaysia
来源
DISCOVER MATERIALS | 2025年 / 5卷 / 01期
关键词
PVDF; Piezoelectric; Airflow; Wind tunnel; Energy harvesting; PVDF; BETA;
D O I
10.1007/s43939-025-00190-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Globally, it has been witnessed that the demand for energy has been increasing daily due to the rapid expansion of industries. As an initiative toward alternative energy, Piezoelectric technology has been implemented for energy harvesting applications to overcome this issue. So, various researchers are developing a flexible, lightweight piezoelectric-based energy harvesting device that can effectively capture mechanical vibrations and convert them into electrical energy. In this concern, polyvinylidene fluoride (PVDF), a polymer-based piezoelectric material, has attained great response with its exceptional piezo, pyro, and ferroelectric properties. Therefore, the current research article focuses on developing PVDF-based nanocomposite films for energy-harvesting applications under low-speed wind turbine. PVDF films were incorporated with various compositions of zinc oxide (ZnO), zirconium oxide (ZrO2), and titanium dioxide (TiO2) nanofillers and synthesized using the solution casting technique to achieve excellent piezoelectric performance. Finally, the fabricated PVDF film samples were tested under a low-speed wind tunnel and resulted that the PVDF film sample possessing 0.4 wt.% of ZnO/ZrO2/TiO2 showed a maximum electrical potential of 1210 mV at 20 m/s velocity, which is 5 times larger than pristine PVDF films which shows that the fabricated PVDF film samples are promising portable electronic nanogenerator (PENG) devices.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Harvesting flow-induced vibration using a highly flexible piezoelectric energy device
    Mutsuda, Hidemi
    Tanaka, Yoshikazu
    Patel, Rupesh
    Doi, Yasuaki
    APPLIED OCEAN RESEARCH, 2017, 68 : 39 - 52
  • [2] Poly(vinylidene fluoride) Copolymers for Hybrid Piezoelectric and Triboelectric Energy Harvesting
    Rodrigues-Marinho, Tiago
    Pace, Giuseppina
    Tubio, Carmen R.
    Lanceros-Mendez, Senentxu
    Costa, Pedro
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (22): : 10454 - 10465
  • [3] Effect of Ions on the Flow-Induced Crystallization of Poly(vinylidene fluoride)
    Chu, Zhaozhe
    Zhao, Ruijun
    Wang, Bin
    Liu, Long
    Ma, Zhe
    Li, Yuesheng
    MACROMOLECULES, 2021, 54 (08) : 3800 - 3809
  • [4] Harnessing flow-induced vibrations for energy harvesting: Experimental and numerical insights using piezoelectric transducer
    Islam, Md
    Ali, Ussama
    Mone, Shital
    PLOS ONE, 2024, 19 (06):
  • [5] Harvesting energy of flow-induced vibrations using cylindrical piezoelectric transducers
    Salem, Shehab
    Frana, Karel
    ENERGY REPORTS, 2023, 9 : 279 - 285
  • [6] Harvesting energy of flow-induced vibrations using cylindrical piezoelectric transducers
    Salem, Shehab
    Frana, Karel
    ENERGY REPORTS, 2023, 9 : 279 - 285
  • [7] Piezoelectric energy harvesting from flow-induced vibration
    Wang, D-A
    Ko, H-H
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2010, 20 (02)
  • [8] RESEARCH ON FLOW-INDUCED ENERGY HARVESTING BY FLEXIBLE PIEZOELECTRIC PLATE WITH UPSTREAM SQUARE CYLINDER
    Zhang, Li
    Yang, Zesheng
    Ding, Lin
    Chen, Yanrong
    PROCEEDINGS OF THE ASME POWER CONFERENCE, 2016, 2016,
  • [9] Micropower energy harvesting using poly(vinylidene fluoride hexafluoropropylene)
    Sukwisute, Pisan
    Muensit, Nantakan
    Soontaranon, Siriwat
    Rugmai, Supagorn
    APPLIED PHYSICS LETTERS, 2013, 103 (06)
  • [10] Piezoelectric β polymorph in poly(vinylidene fluoride)-functionalized multiwalled carbon nanotube nanocomposite films
    Manna, Swarup
    Nandi, Arun K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (40): : 14670 - 14680