Purpose: This study focused on investigating the effect of highway subgrade stabilization with waste marble dust according to the mechanistic-empirical pavement design method. It's aimed to find an ecological and economical solution to the problems created by waste marble dust. Theory and Methods: Three different types of waste marble powder (Afyon White (AB), Burdur Beige (BB), Burdur Travertine (BT)) were added at 0-10-20-30% and 40% ratios to two different low plasticity clayey soils (Soil A (SA), Soil B (SB)), and the changes in the engineering properties of the soils were observed by applying Atterberg limits, standard Proctor, shear box and California bearing ratio (CBR) tests. At the end of the study, pavement design calculations were made according to the CBR, AASHTO-1993 and Mechanistic-Empirical methods based on the test data. Results: The test results showed that when 10%-20% waste marble powder was added to low plasticity clayey soils, the plasticity index values of the soils decreased, the cohesion, internal friction angle, and CBR values also increased. In addition, pavement design calculations predicted that the stabilization using 10%-20% waste marble powder, the required pavement thickness can be reduced by almost half according to the CBR method, and 1 score SN reduction can be achieved according to the AASHTO-93 method. Furthermore, with the calculations of KENPAVE software, according to the Mechanistic-Empirical method, it was predicted that the critical rutting life of the pavement could increase up to 86% on average (Figure A). Conclusion: Considering all the data obtained; It has been concluded that it is appropriate to use waste marble powder a stabilization material in low plasticity clayey soils at rates varying between 10-20% in road infrastructure. It offers very economical solutions in locations where it is a sustainable practice to use waste marble powder instead of materials used in ground stabilization such as Portland cement, lime dust, or chemical products, and where waste marble powder is abundant.