Polynomial Approximation by Doubly Periodic Weierstrass Functions on Disjoint Segments in the LP Metric

被引:0
|
作者
M. A. Shagay [1 ]
N. A. Shirokov [2 ]
机构
[1] National Research University Higher School of Economics,
[2] St.Petersburg Department of Steklov Institute of Mathematics,undefined
关键词
D O I
10.1007/s10958-024-07396-3
中图分类号
学科分类号
摘要
Let sk, 1 ≤ k ≤ m, m ≥ 2, be disjoint segments lying in a parallelogram Q. Denote by ℘(z) a doubly periodic Weierstrass function with the fundamental parallelogram Q. Let fk : sk → ℂ be functions, and let fk′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{k}^{\prime}$$\end{document} ∈ Lpk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}^{{p}_{k}}$$\end{document} (sk), 1 ≤ k ≤ m, 1 < pk < ∞.
引用
收藏
页码:894 / 903
页数:9
相关论文
共 44 条