Artificial intelligence support improves diagnosis accuracy in anterior segment eye diseases

被引:0
|
作者
Maehara, Hiroki [1 ,14 ]
Ueno, Yuta [2 ,14 ]
Yamaguchi, Takefumi [3 ,14 ]
Kitaguchi, Yoshiyuki [4 ,14 ]
Miyazaki, Dai [5 ,14 ]
Nejima, Ryohei [6 ,14 ]
Inomata, Takenori [7 ,14 ]
Kato, Naoko [8 ,14 ]
Chikama, Tai-ichiro [9 ,14 ]
Ominato, Jun [10 ,14 ]
Yunoki, Tatsuya [11 ,14 ]
Tsubota, Kinya [12 ,14 ]
Oda, Masahiro [13 ,14 ]
Suzutani, Manabu [1 ]
Sekiryu, Tetsuju [1 ]
Oshika, Tetsuro [2 ,14 ]
机构
[1] Fukushima Med Univ, Sch Med, Dept Ophthalmol, Fukushima, Japan
[2] Univ Tsukuba, Fac Med, Dept Ophthalmol, 1-1-1 Tennoudai, Tsukuba, Ibaraki 3058576, Japan
[3] Ichikawa Gen Hosp, Tokyo Dent Coll, Dept Ophthalmol, Chiba, Japan
[4] Osaka Univ, Grad Sch Med, Dept Ophthalmol, Osaka, Japan
[5] Tottori Univ, Fac Med, Div Ophthalmol & Visual Sci, Tottori, Japan
[6] Miyata Eye Hosp, Dept Ophthalmol, Miyazaki, Japan
[7] Juntendo Univ, Grad Sch Med, Dept Ophthalmol, Tokyo, Japan
[8] Tsukazaki Hosp, Dept Ophthalmol, Himeji, Hyogo, Japan
[9] Hiroshima Univ, Grad Sch Biomed & Hlth Sci, Div Ophthalmol & Visual Sci, Hiroshima, Japan
[10] Niigata Univ, Grad Sch Med & Dent Sci, Div Ophthalmol & Visual Sci, Niigata, Japan
[11] Univ Toyama, Dept Ophthalmol, Toyama, Japan
[12] Tokyo Med Univ, Dept Ophthalmol, Tokyo, Japan
[13] Nagoya Univ, Grad Sch Informat, Nagoya, Japan
[14] Japan Anterior Segment Artificial Intelligence Res, Tsukuba, Japan
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Artificial intelligence; Ocular surface; AI support; Smartphone image; Slit-lamp image; DEEP LEARNING ALGORITHM; DIABETIC-RETINOPATHY; VALIDATION; CARE;
D O I
10.1038/s41598-025-89768-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CorneAI, a deep learning model designed for diagnosing cataracts and corneal diseases, was assessed for its impact on ophthalmologists' diagnostic accuracy. In the study, 40 ophthalmologists (20 specialists and 20 residents) classified 100 images, including iPhone 13 Pro photos (50 images) and diffuser slit-lamp photos (50 images), into nine categories (normal condition, infectious keratitis, immunological keratitis, corneal scar, corneal deposit, bullous keratopathy, ocular surface tumor, cataract/intraocular lens opacity, and primary angle-closure glaucoma). The iPhone and slit-lamp images represented the same cases. After initially answering without CorneAI, the same ophthalmologists responded to the same cases with CorneAI 2-4 weeks later. With CorneAI's support, the overall accuracy of ophthalmologists increased significantly from 79.2 to 88.8% (P < 0.001). Specialists' accuracy rose from 82.8 to 90.0%, and residents' from 75.6 to 86.2% (P < 0.001). Smartphone image accuracy improved from 78.7 to 85.5% and slit-lamp image accuracy from 81.2 to 90.6% (both, P < 0.001). In this study, CorneAI's own accuracy was 86%, but its support enhanced ophthalmologists' accuracy beyond the CorneAI's baseline. This study demonstrated that CorneAI, despite being trained on diffuser slit-lamp images, effectively improved diagnostic accuracy, even with smartphone images.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Artificial intelligence in the anterior segment of eye diseases
    Liu, Yao-Hong
    Li, Lin-Yu
    Liu, Si-Jia
    Gao, Li-Xiong
    Tang, Yong
    Li, Zhao-Hui
    Ye, Zi
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2024, 17 (09) : 1743 - 1751
  • [2] Guidelines for the application of artificial intelligence in the diagnosis of anterior segment diseases (2023) artificial intelligence in the diagnosis of anterior segment diseases(2023); Ophthalmic Imaging
    Shao, Yi
    Jie, Ying
    Liu, Zu-Guo
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2023, 16 (09) : 1373 - 1385
  • [3] Artificial intelligence for anterior segment diseases: Emerging applications in ophthalmology
    Ting, Darren Shu Jeng
    Foo, Valencia H. X.
    Yang, Lily Wei Yun
    Sia, Josh Tjunrong
    Ang, Marcus
    Lin, Haotian
    Chodosh, James
    Mehta, Jodhbir S.
    Ting, Daniel Shu Wei
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2021, 105 (02) : 158 - 168
  • [4] Enhanced Classification of Anterior Segment Eye Diseases Using Artificial Intelligence: A Comprehensive Model and Performance Evaluation
    Wagh, Himanshu
    Ong, Lauren
    Tabaie, Ethan
    Reddy, Akshay
    Lee, Longines
    Wang, Jen-Yeu
    Aval, Helia
    Bolanos, Alexander
    Bhaumik, Anamitra
    Martel, James
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [5] Rare Diseases of the Anterior Segment of the Eye: Update on Diagnosis and Management
    Lambiase, Alessandro
    Mantelli, Flavio
    Sacchetti, Marta
    Rahimi, Siavash
    Massaro-Giordano, Giacomina
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [6] Application of artificial intelligence in anterior segment ophthalmic diseases: diversity and standardization
    Wu, Xiaohang
    Liu, Lixue
    Zhao, Lanqin
    Guo, Chong
    Li, Ruiyang
    Wang, Ting
    Yang, Xiaonan
    Xie, Peichen
    Liu, Yizhi
    Lin, Haotian
    ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (11)
  • [7] Application of Artificial Intelligence in Ophthalmology for the Diagnosis and Treatment of Eye Diseases
    Ilyasova, N. Yu
    Demin, N. S.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (03) : 477 - 482
  • [8] Application of Artificial Intelligence in Ophthalmology for the Diagnosis and Treatment of Eye Diseases
    N. Yu. Ilyasova
    N. S. Demin
    Pattern Recognition and Image Analysis, 2022, 32 : 477 - 482
  • [9] Autoimmune Diseases and the Anterior Segment of the Eye
    Sacchetti, Marta
    Mantelli, Flavio
    Lambiase, Alessandro
    JOURNAL OF OPHTHALMOLOGY, 2018, 2018
  • [10] Artificial Intelligence for Anterior Segment Diseases: A Review of Potential Developments and Clinical Applications
    Zhe Xu
    Jia Xu
    Ce Shi
    Wen Xu
    Xiuming Jin
    Wei Han
    Kai Jin
    Andrzej Grzybowski
    Ke Yao
    Ophthalmology and Therapy, 2023, 12 : 1439 - 1455