Multi-branch convolutional neural network with cross-attention mechanism for emotion recognition

被引:0
|
作者
Yan, Fei [1 ]
Guo, Zekai [1 ]
Iliyasu, Abdullah M. [2 ,3 ]
Hirota, Kaoru [3 ,4 ]
机构
[1] Changchun Univ Sci & Technol, Sch Comp Sci & Technol, Changchun 130022, Peoples R China
[2] Prince Sattam Bin Abdulaziz Univ, Coll Engn, Al Kharj 11942, Saudi Arabia
[3] Tokyo Inst Technol, Sch Comp, Yokohama 2268502, Japan
[4] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Biomedical engineering; EEG signal; Emotion recognition; Feature fusion; Convolutional neural network;
D O I
10.1038/s41598-025-88248-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Research on emotion recognition is an interesting area because of its wide-ranging applications in education, marketing, and medical fields. This study proposes a multi-branch convolutional neural network model based on cross-attention mechanism (MCNN-CA) for accurate recognition of different emotions. The proposed model provides automated extraction of relevant features from multimodal data and fusion of feature maps from diverse sources as modules for the subsequent emotion recognition. In the feature extraction stage, various convolutional neural networks were designed to extract critical information from multiple dimensional features. The feature fusion module was used to enhance the inter-correlation between features based on channel-efficient attention mechanism. This innovation proves effective in fusing distinctive features within a single mode and across different modes. The model was assessed based on EEG emotion recognition experiments on the SEED and SEED-IV datasets. Furthermore, the efficiency of the proposed model was evaluated via multimodal emotion experiments using EEG and text data from the ZuCo dataset. Comparative analysis alongside contemporary studies shows that our model excels in terms of accuracy, precision, recall, and F1-score.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Facial Expression Recognition Using Multi-Branch Attention Convolutional Neural Network
    He, Yinggang
    IEEE ACCESS, 2023, 11 : 1244 - 1253
  • [2] Shallow multi-branch attention convolutional neural network for micro-expression recognition
    Wang, Gang
    Huang, Shucheng
    Tao, Zhe
    MULTIMEDIA SYSTEMS, 2023, 29 (04) : 1967 - 1980
  • [3] Shallow multi-branch attention convolutional neural network for micro-expression recognition
    Gang Wang
    Shucheng Huang
    Zhe Tao
    Multimedia Systems, 2023, 29 : 1967 - 1980
  • [4] Dense Graph Convolutional With Joint Cross-Attention Network for Multimodal Emotion Recognition
    Cheng, Cheng
    Liu, Wenzhe
    Feng, Lin
    Jia, Ziyu
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (05): : 6672 - 6683
  • [5] Cross-attention multi-branch network for fundus diseases classification using SLO images
    Xie, Hai
    Zeng, Xianlu
    Lei, Haijun
    Du, Jie
    Wang, Jiantao
    Zhang, Guoming
    Cao, Jiuwen
    Wang, Tianfu
    Lei, Baiying
    MEDICAL IMAGE ANALYSIS, 2021, 71
  • [6] Comprehensive Analysis of Mammography Images Using Multi-Branch Attention Convolutional Neural Network
    Al-Mansour, Ebtihal
    Hussain, Muhammad
    Aboalsamh, Hatim A.
    Al-Ahmadi, Saad A.
    APPLIED SCIENCES-BASEL, 2023, 13 (24):
  • [7] Multi-branch Aggregate Convolutional Neural Network for Image Classification
    Fan, Rui
    Jiang, Pinqun
    Zeng, Shangyou
    Li, Peng
    SERVICE-ORIENTED COMPUTING, ICSOC 2018, 2019, 11434 : 102 - 112
  • [8] Multi-branch sustainable convolutional neural network for disease classification
    Naz, Maria
    Shah, Munam Ali
    Khattak, Hasan Ali
    Wahid, Abdul
    Asghar, Muhammad Nabeel
    Rauf, Hafiz Tayyab
    Khan, Muhammad Attique
    Ameer, Zoobia
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (05) : 1621 - 1633
  • [9] Multi-branch guided attention network for irregular text recognition
    Wang, Cong
    Liu, Cheng-Lin
    NEUROCOMPUTING, 2021, 425 : 278 - 289
  • [10] Multimodal Cross-Attention Bayesian Network for Social News Emotion Recognition
    Wang, Xinzhi
    Li, Mengyue
    Chang, Yudong
    Luo, Xiangfeng
    Yao, Yige
    Li, Zhichao
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,