On big primitive divisors of Fibonacci numbers

被引:0
|
作者
Hong, Haojie [1 ]
机构
[1] Hainan Univ, Sch Math & Stat, 58 Renmin Ave, Haikou 570228, Peoples R China
来源
RAMANUJAN JOURNAL | 2025年 / 67卷 / 01期
关键词
Primitive divisor; Fibonacci number; Linear recurrence; p-adic logarithmic form; FORMS;
D O I
10.1007/s11139-025-01068-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we prove that for any given positive integer kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}, when n is bigger than a constant explicitly depending on kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}, the n-th Fibonacci number has a primitive divisor not less than (kappa+1)n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa +1) n-1$$\end{document}.
引用
收藏
页数:19
相关论文
共 50 条