Intelligent identification of coal macerals using improved semi-supervised semantic segmentation methods

被引:0
|
作者
Xu, Na [1 ]
Wang, Qingfeng [1 ]
Li, Pengfei [1 ]
Kong, Jiapei [1 ]
Li, Qing [2 ]
Engle, Mark A. [3 ]
Hower, James C. [4 ,5 ]
Zhu, Wei [1 ]
机构
[1] China Univ Min & Technol Beijing, Coll Geosci & Survey Engn, Beijing 100083, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Hung Hom, Kowloon HKSAR, Hong Kong, Peoples R China
[3] Univ Texas El Paso, Dept Earth Environm & Resource Sci, 500 West Univ Ave, El Paso, TX 79968 USA
[4] Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA
[5] Univ Kentucky, Dept Earth & Environm Sci, Lexington, KY 40506 USA
基金
中国国家自然科学基金;
关键词
Coal macerals; Deep learning; Semi-supervised semantic segmentation model; Dataset establishment; Conditional random fields; LEARNING TECHNIQUES; IMAGE-ANALYSIS; MICROSCOPY; COALFIELD; ENRICHMENT; SULFUR; ORIGIN;
D O I
10.1016/j.coal.2025.104712
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Recently, the demand for automatic coal maceral identification has gradually received much attention, and hence deep learning has been applied to the identification of coal macerals. However, a large number of labels are necessary for supervised learning, which imposes challenges for automatic coal maceral identification. In this study, the methods for identifying coal macerals were fully reviewed. Considering the limited data and the complexity of annotation, a semi-supervised semantic segmentation model combined with conditional random fields (CRF) algorithm was suggested for pixel-level identification of coal macerals. Initially, a new dataset of coal macerals was established. The dataset contains many different coal maceral images collected from the USA and China, as well as the corresponding labeled images. Then the model was trained through adversarial loss, and the prediction results were evaluated through pixel accuracy (PA) and intersection over union (IoU). The results are compared with other three existing unsupervised image segmentation methods. The semi-supervised model achieved, on average, PA and IoU of 84 % and 74 %, respectively. The results show that semi-supervised semantic segmentation can achieve high-precision identification of coal macerals. The CRF algorithm is then employed on the predictions of the model, and the accuracies for the three coal maceral groups achieved 81 %, 84 %, and 88 %, respectively. Finally, the application results of the model on the testing dataset are discussed to compare the differences between artificial intelligence and manual identification. This study demonstrates that semi-supervised semantic segmentation combined with CRF algorithm can be successfully applied to automatic coal maceral identification.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Colour Augmentation for Improved Semi-supervised Semantic Segmentation
    French, Geoff
    Mackiewicz, Michal
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 356 - 363
  • [2] Semi-supervised semantic segmentation using an improved generative adversarial network
    Xu, Di
    Wang, Zhili
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (05) : 9709 - 9719
  • [3] Semi-supervised Learning Methods for Semantic Segmentation of Polyps
    Ines, Adrian
    Dominguez, Cesar
    Heras, Jonathan
    Mata, Eloy
    Pascual, Vico
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CAEPIA 2024, 2024, : 162 - 172
  • [4] Transferable Semi-Supervised Semantic Segmentation
    Xiao, Huaxin
    Wei, Yunchao
    Liu, Yu
    Zhang, Maojun
    Feng, Jiashi
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 7420 - 7427
  • [5] Universal Semi-Supervised Semantic Segmentation
    Kalluri, Tarun
    Varma, Girish
    Chandraker, Manmohan
    Jawahar, C. V.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5258 - 5269
  • [6] Active Learning for Improved Semi-Supervised Semantic Segmentation in Satellite Images
    Desai, Shasvat
    Ghose, Debasmita
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1485 - 1495
  • [7] Semi-supervised semantic segmentation for grape bunch identification in natural images
    Heras, J.
    Marani, R.
    Milella, A.
    PRECISION AGRICULTURE'21, 2021, : 331 - 337
  • [8] Semantic Segmentation with Active Semi-Supervised Learning
    Rangnekar, Aneesh
    Kanan, Christopher
    Hoffman, Matthew
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5955 - 5966
  • [9] LaserMix for Semi-Supervised LiDAR Semantic Segmentation
    Kong, Lingdong
    Ren, Jiawei
    Pan, Liang
    Liu, Ziwei
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21705 - 21715
  • [10] Semi-Supervised Semantic Segmentation With Region Relevance
    Chen, Rui
    Chen, Tao
    Wang, Qiong
    Yao, Yazhou
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 852 - 857