A novel technique of image encryption through projective coordinates of elliptic curve

被引:0
|
作者
Hafeez Ur Hafsa [1 ]
Tariq Rehman [2 ]
Ali Yahya Shah [1 ]
undefined Hummdi [3 ]
机构
[1] Quaid-I-Azam University,Department of Mathematics
[2] National University of Computer and Emerging Sciences,Department of Sciences and Humanities
[3] King Khalid University,Department of Mathematics
关键词
Elliptic curve; Projective coordinates; Substitution boxes; Nonlinearity; Pseudo-Random Numbers; Image encryption;
D O I
10.1007/s11042-024-19598-7
中图分类号
学科分类号
摘要
Efficient multiple pseudo-random number sequences (PRNS) and substitution boxes (S-boxes) are two of the most consequential construction blocks jointly assumed commonly for secure data encryption. Multiple aspects pave the way to address large-scale multimedia data. However, the computational efforts on multiple constructions may limit the required ciphering. Therefore, reducing the computational cost of various patterns, such as PRNS and S-boxes, is the core requirement for an efficient cryptosystem. For this achievement, this article addresses the challenge of constructing secure S-boxes with enhanced nonlinearity (NL) and keyspace in image encryption. Our technique aims to bolster security in digital image encryption methods by prioritizing robustness over conventional complexity. We present a novel and efficient cryptosystem that utilizes Projective Coordinates (PCs) of Elliptic Curves (ECs) for encrypting digital images. Initially, we leverage the power of PCs of ECs over the set of integers modulo pr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}^{r}$$\end{document}, where p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} is prime and r=9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r = 9$$\end{document}. Using ECs and applying trace mappings, we create optimal 8×8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8\times 8$$\end{document} S-boxes for pixel substitution in digital images. Moreover, the proposed scheme generates 2108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2}^{108}$$\end{document} S-boxes in a single case of the proposed scheme. In addition, Pseudo-Random Numbers (PRNs) are generated from ECs over modulo pr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}^{r}$$\end{document} to enhance security. Further, computational experiments demonstrate that our proposed cryptosystem offers superior protection against linear, differential, and statistical attacks compared to existing cryptosystems.
引用
收藏
页码:2651 / 2688
页数:37
相关论文
共 50 条
  • [1] Set of Points on Elliptic Curve in Projective Coordinates
    Futa, Yuichi
    Okazaki, Hiroyuki
    Shidama, Yasunari
    FORMALIZED MATHEMATICS, 2011, 19 (03): : 131 - 138
  • [2] Operations of Points on Elliptic Curve in Projective Coordinates
    Futa, Yuichi
    Okazaki, Hiroyuki
    Mizushima, Daichi
    Shidama, Yasunari
    FORMALIZED MATHEMATICS, 2012, 20 (01): : 87 - 95
  • [3] A novel image encryption scheme based on an elliptic curve
    Hayat, Umar
    Azam, Naveed Ahmed
    SIGNAL PROCESSING, 2019, 155 : 391 - 402
  • [4] A new image encryption technique combining Elliptic Curve Cryptosystem with Hill Cipher
    Dawahdeh, Ziad E.
    Yaakob, Shahrul N.
    bin Othman, Rozmie Razif
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2018, 30 (03) : 349 - 355
  • [5] JPEG Image Encryption with Elliptic Curve Cryptography
    Bakhtiari, Saeid
    Ibrahim, Subariah
    Salleh, Mazleena
    Bakhtiari, Majid
    2014 INTERNATIONAL SYMPOSIUM ON BIOMETRICS AND SECURITY TECHNOLOGIES (ISBAST), 2014, : 144 - 149
  • [6] Image Encryption using Elliptic Curve Cryptography
    Singh, Laiphrakpam Dolendro
    Singh, Khumanthem Manglem
    ELEVENTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2015/INDIA ELEVENTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2015/NDIA ELEVENTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2015, 2015, 54 : 472 - 481
  • [7] A Novel Asymmetric Hyperchaotic Image Encryption Scheme Based on Elliptic Curve Cryptography
    Liang, Haotian
    Zhang, Guidong
    Hou, Wenjin
    Huang, Pinyi
    Liu, Bo
    Li, Shouliang
    APPLIED SCIENCES-BASEL, 2021, 11 (12):
  • [8] Improved elliptic curve cryptography with homomorphic encryption for medical image encryption
    Yin, Shoulin
    Liu, Jie
    Teng, Lin
    Liu, Jie (ljnan127@163.com), 2020, Femto Technique Co., Ltd. (22) : 421 - 426
  • [9] An Integrated Image Encryption Scheme Based on Elliptic Curve
    Khalid, Ijaz
    Shah, Tariq
    Eldin, Sayed M.
    Shah, Dawood
    Asif, Muhammad
    Saddique, Imran
    IEEE ACCESS, 2023, 11 : 5483 - 5501
  • [10] Image Encryption Using Elliptic Curve Cryptograhy and Matrix
    Nagaraj, Srinivasan
    Raju, G. S. V. P.
    Rao, K. Koteswara
    INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND CONVERGENCE (ICCC 2015), 2015, 48 : 276 - 281