MCPA: multi-scale cross perceptron attention network for 2D medical image segmentation

被引:0
|
作者
Xu, Liang [1 ,2 ]
Chen, Mingxiao [3 ]
Cheng, Yi [3 ]
Song, Pengwu [1 ,2 ]
Shao, Pengfei [3 ]
Shen, Shuwei [1 ,2 ]
Yao, Peng [4 ]
Xu, Ronald X. [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Sch Biomed Engn, Div Life Sci & Med, Hefei, Peoples R China
[2] Univ Sci & Technol China, Suzhou Inst Adv Res, Suzhou, Peoples R China
[3] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrument, Hefei, Peoples R China
[4] Univ Sci & Technol China, Sch Microelect, Hefei, Peoples R China
关键词
Medical image; Segmentation; Multi-scale; Cross perceptron; Progressive dual-branch structure; VESSEL SEGMENTATION;
D O I
10.1007/s40747-024-01671-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The UNet architecture, based on convolutional neural networks (CNN), has demonstrated its remarkable performance in medical image analysis. However, it faces challenges in capturing long-range dependencies due to the limited receptive fields and inherent bias of convolutional operations. Recently, numerous transformer-based techniques have been incorporated into the UNet architecture to overcome this limitation by effectively capturing global feature correlations. However, the integration of the Transformer modules may result in the loss of local contextual information during the global feature fusion process. In this work, we propose a 2D medical image segmentation model called multi-scale cross perceptron attention network (MCPA). The MCPA consists of three main components: an encoder, a decoder, and a Cross Perceptron. The Cross Perceptron first captures the local correlations using multiple Multi-scale Cross Perceptron modules, facilitating the fusion of features across scales. The resulting multi-scale feature vectors are then spatially unfolded, concatenated, and fed through a Global Perceptron module to model global dependencies. Considering the high computational cost of using 3D neural network models, and the fact that many important clinical data can only be obtained in two dimensions, our MCPA focuses on 2D medical image segmentation. Furthermore, we introduce a progressive dual-branch structure (PDBS) to address the semantic segmentation of the image involving finer tissue structures. This structure gradually shifts the segmentation focus of MCPA network training from large-scale structural features to more sophisticated pixel-level features. We evaluate our proposed MCPA model on several publicly available medical image datasets from different tasks and devices, including the open large-scale dataset of CT (Synapse), MRI (ACDC), and widely used 2D medical imaging datasets captured by fundus camera (DRIVE, CHASE_\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\_$$\end{document}DB1, HRF), and OCTA (ROSE). The experimental results show that our MCPA model achieves state-of-the-art performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] 2D Medical Image Segmentation Combining Multi-Scale Channel Attention and Boundary Enhancement
    Chen D.
    Zhang F.
    Hao P.
    Wu F.
    Dong T.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (11): : 1742 - 1752
  • [2] MSAANet: Multi-scale Axial Attention Network for medical image segmentation
    Zeng, Hao
    Shan, Xinxin
    Feng, Yu
    Wen, Ying
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2291 - 2296
  • [3] MSDANet: A multi-scale dilation attention network for medical image segmentation
    Zhang, Jinquan
    Luan, Zhuang
    Ni, Lina
    Qi, Liang
    Gong, Xu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 90
  • [4] MAPNet: A Multi-scale Attention Pooling Network for Ultrasound Medical Image Segmentation
    Wang, Shixun
    Wang, Mengjiao
    Li, Yuan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VIII, ICIC 2024, 2024, 14869 : 15 - 26
  • [5] A Medical Image Segmentation Network with Multi-Scale and Dual-Branch Attention
    Zhu, Cancan
    Cheng, Ke
    Hua, Xuecheng
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [6] 2D medical image segmentation via learning multi-scale contextual dependencies
    Pang, Shuchao
    Du, Anan
    Yu, Zhenmei
    Orgun, Mehmet A.
    METHODS, 2022, 202 : 40 - 53
  • [7] Collaborative Attention Guided Multi-Scale Feature Fusion Network for Medical Image Segmentation
    Xu, Zhenghua
    Tian, Biao
    Liu, Shijie
    Wang, Xiangtao
    Yuan, Di
    Gu, Junhua
    Chen, Junyang
    Lukasiewicz, Thomas
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (02): : 1857 - 1871
  • [8] Label-aware Attention Network with Multi-scale Boosting for Medical Image Segmentation
    Wang, Linbo
    Xu, Peng
    Cao, Xianfeng
    Nappi, Michele
    Wan, Shaohua
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [9] SMANet: Superpixel-guided multi-scale attention network for medical image segmentation
    Shen, Yiwei
    Guo, Junchen
    Liu, Yan
    Xu, Chang
    Li, Qingwu
    Qi, Fei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [10] MCDALNet: Multi-scale Contextual Dual Attention Learning Network for Medical Image Segmentation
    Guo, Pengcheng
    Su, Xiangdong
    Zhang, Haoran
    Bao, Feilong
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,